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Administrivia

• Web site is: https://github.com/cornelltech/CS5112-F18
– As usual, this is pretty much all you need to know

• Course staff:
– Instructors: Ramin Zabih (rdz@cs.cornell.edu) & Greg Zecchini

(gez3@cornell.edu)
– TA: Richard Bowen (rsb349@cornell.edu), TBA
– Consultants/graders: Iris Zhang (wz337@cornell.edu), TBA

https://github.com/cornelltech/CS5112-F18
mailto:rdz@cs.cornell.edu
mailto:gez3@cornell.edu
mailto:rsb349@cornell.edu
mailto:wz337@cornell.edu


Basic information

• CS5112 work is constant but not very time intensive
– Homework every 2 weeks or so, quiz every week

• 1 prelim 10/25 and final 12/4, both in-class closed book
– Open book doesn’t actually help in my experience

• Greg will teach the 5 evening clinics 6:30pm-8pm
• Greg and Ramin will lecture, with a few guest lectures
• We are working on getting consultants to help students who 

don’t have a lot of programming experience



Academic integrity

• Each student is expected to abide by the Cornell University 
Code of Academic Integrity
– https://theuniversityfaculty.cornell.edu/academic-integrity/

• Any work submitted by a student in this course for academic 
credit will be the student's own work
– Exception: you do the homework assignments in groups of two

• We take this seriously. Students have been expelled from 
Cornell for violations. Copying code is easy to catch.

https://theuniversityfaculty.cornell.edu/academic-integrity/


Today

• Clinic this evening (here!)
• HW1 out tonight, due in 2 weeks

– Based primarily on today’s lecture and clinic

• First quiz a week from today
• Placement exam available tonight, due in 24 hours
• If you were a CS major, possibly worth your time



Clinics schedule

• Evening sessions to review some of the fundamentals underlying 
much of this course's content

• Attendance is mandatory
• Schedule (dates final, topics tentative):

– 8/23   Graphs and Graph Algorithms
– 8/30   Hashing and Related Data Structures
– 9/6     Sorting and Searching
– 9/20   Development tools (UNIX commands, Github, etc.)
– 10/4   Cloud Development



Course theme: algorithms and applications

• Algorithms are the key tool in CS, but without applications it’s 
hard to appreciate their importance

• We will focus on 3 key application areas:
– Cryptocurrency
– AI (artificial intelligence)
– AR/VR (augmented/virtual reality)

• BUT this is not a course about those applications
• Application of algorithms is often not obvious!



Lecture Outline

• The shortest path problem
• Dijkstra’s algorithm
• Applications: image editing and pirate grammar



Two very common approaches in CS

• Given a problem where you are searching for a solution:
– Try everything (exhaustive search)
– Do what seems best at the moment, repeatedly (greedy algorithms)

• Exhaustive search (almost) never works on serious problems
• Greedy algorithms are widely used

– Currently famous example: SGD for neural networks

• Note: there are other approaches we will cover
– Such as dynamic programming



The shortest path problem

• General version: given a graph with edge weights, a starting 
node 𝑠𝑠 and a target 𝑡𝑡, find shortest path from 𝑠𝑠 to 𝑡𝑡

• Claim: this problem is impossible to solve!



Obvious application of shortest paths: airfare

• Nodes are cities, edges are direct flights, weights are airfare
• What is the cheapest way to get from LGA to Ithaca?

– Presumably you can charter a plane



Fixing the problem definition

• Suppose that there is a flight from Boise to El Paso, and back 
again, that the airline pays you $1 to fly around

• Further, suppose that you can get to Boise (or El Paso)
• You can make an arbitrary amount of money by just flying back 

and forth!
• This is a cycle in the graph whose sum of weights is negative
• Easy solution: require positive edge weights

– Or maybe detect negative cycles?



Not so obvious applications

• Making fake photographs
• Speech recognition/predicting stock prices by DTW
• Pirate grammar!
• Modeling a Cornell student (at end of class)



Making fake photographs

• Sneak preview: will cover this in the AR/VR section of CS5112
• How do we create images like this:

• Given an image, how do you cut out an object from it?
• You don’t want to manually select the pixels



Intelligent scissors

• Idea: shortest paths
– E.N. Mortensen and W.A. Barrett, Interactive Segmentation with 

Intelligent Scissors, SIGGRAPH 1995

• Adobe calls this the “Magnetic Lasso”
• Video here
• More details in November!

https://youtu.be/o-m3loHVbJw?t=94


Dynamic Time Warping (DTW)



Rules of Pirate grammar

• Pirates always start their sentences with “Barkeep!”
– 90% of the time they next say “More” (i.e., they order)
– 10% of the time they next say “Yer a” (i.e., they insult)
– If they say “More”, they next say:

• 60% “Of your best”
• 40% “Of the same”

• Lots more rules, discovered by experts in pirate linguistics
• Question: what sentence is a pirate most likely to say? 



Pirate grammar as a graph

“Barkeep!” “More”

“Yer a”

“of your 
best”

“of the 
same”

“scurvy”

“grog!”

“grub.”

“chicken.”

“wimpy”

.9

.1

.6

.4



Simplified pirate grammar

“Barkeep!” “More”

“Yer a”

“of your 
best grog!”

“of the same 
wimpy 
grub.”

“scurvy 
chicken.”

.9

.1

.6

.4

1



How to make this into shortest paths?

• On the surface this is not at all obvious
– Which is why this is worth thinking about carefully

• What we actually need to determine is the probability of any 
individual sentence
– Example: “Barkeep! More of your best grog!” = .9 * .6 = .45

• So we look at all paths from the root to a leaf node
– Each edge has a probability
– Multiply these together and find the max

• This looks like “find the path where the product of the edges is 
maximized”, not “find the shortest path from 𝑠𝑠 to 𝑡𝑡”



Easy part: Add a fake source and sink

• Red links have probability 1
• Now we need to find the “highest product path” from 𝑠𝑠 to 𝑡𝑡

“Barkeep!” “More”

“Yer a”

“of your 
best grog!”

“of the same 
wimpy 
grub.”

“scurvy 
chicken.”
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.6
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1

𝑠𝑠 𝑡𝑡



Algebra to the rescue

• We want to maximize the product of edge probabilities
– Which are numbers between 0 and 1

• Instead we need to minimize the sum of edge weights
• We know that log is monotonic, and log ∏𝑖𝑖 𝑝𝑝𝑖𝑖 = ∑𝑖𝑖 log 𝑝𝑝𝑖𝑖
• Maximize the product of edge probabilities = maximize the 

sum of log probabilities
– Which are negative: 0 < 𝑝𝑝𝑖𝑖 ≤ 1 ⇒ log 𝑝𝑝𝑖𝑖 ≤ 0

• Maximizing anything is the same as minimizing its negative



Algebra in action

“Barkeep!” “More”

“Yer a”
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best grog!”
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wimpy 
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log10 .9 ≈ −0.046
log10 ( .1) = −1



Key property of shortest paths

• Suppose the shortest path from 𝑠𝑠 to 𝑡𝑡 goes via 𝑣𝑣
– I.e., 𝑠𝑠 … 𝑣𝑣 … 𝑡𝑡

– Otherwise, we would take that “shortcut” instead, and create an 
even shorter path

• Considering 𝑠𝑠 − 𝑣𝑣 − 𝑡𝑡 paths, only need shortest 𝑠𝑠 − 𝑣𝑣 path
– Don’t need to try everything!

shortest s-v path 



Shortest paths by increasing budgets

• Here is the basic idea, which we will simply speed up
• Where can you fly from LGA on a $1 budget? 

– Does that get you to Ithaca?

• If it does, you are done
• If not, add $1 to your budget and do it again
• You can think of this as expanding a ball around 𝑠𝑠 until you 

eventually get to 𝑡𝑡
– Though we are doing this on a graph



Example

• For $1 can get to 𝑢𝑢
• For $2 can also get to 𝑣𝑣
• Gray area shows budget at $2
• At $3 we can also get to 𝑥𝑥 via 𝑢𝑢
• Key concepts: 

– Explored nodes: {𝑠𝑠,𝑢𝑢, 𝑣𝑣}
– Fringe: {𝑥𝑥, 𝑦𝑦, 𝑧𝑧}

𝑠𝑠

𝑢𝑢

𝑣𝑣

𝑦𝑦

𝑥𝑥

𝑧𝑧

1

2

4

2
1

2
2

3

3



Key concepts

• Explored nodes: we know the cheapest way to get there
– Shown as inside the gray zone

• Fringe nodes: adjacent to an explored node
• When we increase the budget we add a fringe node into the 

set of explored nodes
– This is pretty inefficient, hold that thought

• Keep on doing this until 𝑡𝑡 (i.e. Ithaca) is in the explored nodes



Budget approach is crazy

• Suppose the cheapest flight from LGA is $500
• In our example, imagine increasing by $.01

– So we consider  $2.01, $2.02, …

• But we know that nothing will happen until we 
increase our budget to $3
– Why not just do this directly?



Dijkstra’s algorithm

• We maintain an explored set 𝑆𝑆 with an invariant:
– For each 𝑢𝑢 ∈ 𝑆𝑆 hold the shortest path from 𝑠𝑠 to 𝑢𝑢, write this as 𝑑𝑑(𝑢𝑢)

• Both the distance and the actual path, see HW1
• Easiest to just think about the distance 𝑑𝑑(𝑢𝑢)

– Add an unexplored node 𝑣𝑣 to 𝑆𝑆
• But, which one to choose?
• On the fringe of 𝑆𝑆, so we add just one edge



Choice of edge for a fringe node

• The fringe node 𝑣𝑣 can be adjacent to several nodes in 𝑆𝑆
– If we choose to add 𝑣𝑣, pick the right node in 𝑆𝑆 to connect it to

s

v

u1
d(u1)

S

w1

u2

w2

d(u2)

d(u1) + w1
versus

d(u2) + w2



Choice of fringe node

• If we pick 𝑣𝑣 to add to 𝑆𝑆, we will connect it to the 𝑢𝑢 in 𝑆𝑆 that 
minimizes 𝑑𝑑(𝑢𝑢) + the length of the (𝑢𝑢, 𝑣𝑣) edge
– Call this shortest path length π(v)
– Think of this as “cheapest way to add 𝑣𝑣 to 𝑆𝑆”
– But can we pick an arbitrary 𝑣𝑣 to add?

• Can prove that this would break our invariant about 𝑆𝑆!
• Pick 𝑣𝑣 with smallest π(v), then add it to 𝑆𝑆 with 𝑑𝑑(𝑣𝑣) = π(v)



Shortest path example

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6



HW1 algorithm

• Start with 𝑆𝑆 = {𝑠𝑠}, all other nodes in 𝑄𝑄
– 𝑑𝑑(𝑠𝑠) = 0, else 𝑑𝑑(𝑣𝑣) = ∞ (i.e. upper bound)

• Pick 𝑣𝑣 on fringe of 𝑆𝑆 that minimizes π(𝑣𝑣)
– I.e., the 𝑣𝑣 ∈ 𝑄𝑄 with a neighbor in 𝑆𝑆 that is cheapest to add to 𝑆𝑆

• On recursive call, we will have
– 𝑑𝑑(𝑣𝑣) = �(𝑣𝑣)
– 𝑣𝑣 is now in 𝑆𝑆, and no longer in 𝑄𝑄

• Done when we pick target 𝑡𝑡
– Computes more than shortest 𝑠𝑠 − 𝑡𝑡 path!



Dijkstra's Shortest Path Algorithm

• Find shortest path from s to t.
• Blue edges: shortest path to a node within S.
• Green edges: what we would add for each fringe vertex.
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Implementation notes

• There are many ways to speed this up in practice
• Graph representations

– You will explore 2 of these in HW1

• Naïve Dijkstra with 𝑛𝑛 nodes and 𝑚𝑚 edges is 𝑂𝑂 𝑚𝑚𝑛𝑛
• We need to remove from 𝑄𝑄 the smallest node 𝑣𝑣 with smallest 

value of 𝜋𝜋(𝑣𝑣)
– Priority queue implements remove-min in 𝑂𝑂(log𝑛𝑛)
– This makes Dijkstra run in 𝑂𝑂(𝑚𝑚 log𝑛𝑛) time



Another class of examples

• Let’s model student behavior over time (hourly basis)
• Students have 3 possible states:

– Awake (A)
– Sleeping (S)
– Doing CS5112 homework (H)

• If you know their state at time 𝑡𝑡 you know the probability of 
their other states at time 𝑡𝑡 + 1
– Example: A goes to A (.5), S (.49), H(.01)



Trellis graph

• We want to find the most likely 12 hour day for a student
• At every time 𝑡𝑡 there are 3 nodes, for A/S/H
• There are edges with transition probabilities

– Just like pirate grammar!

• So a day is a 12-node path through the graph
• This is closely related to a “Hidden Markov Model”

– Widely used! Famous examples include speech, handwriting, 
computer vision, bioinformatics, etc.



Example

• Important note: with 𝑆𝑆
states and time 𝑇𝑇 there 
are 𝑂𝑂(𝑆𝑆𝑇𝑇) nodes in the 
graph and 𝑂𝑂(𝑆𝑆2 𝑇𝑇) edges

• So running time of naïve  
Dijkstra is 𝑂𝑂(𝑆𝑆3𝑇𝑇2)

• Can reduce this to 
𝑂𝑂(𝑆𝑆2 𝑇𝑇) with dynamic 
programming (Viterbi)

𝐴𝐴

𝑆𝑆

𝐻𝐻

𝐴𝐴

𝑆𝑆

𝐻𝐻

𝐴𝐴

𝑆𝑆

𝐻𝐻

𝑡𝑡 = 1 𝑡𝑡 = 2 𝑡𝑡 = 3
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