## CS5112: Algorithms and Data Structures for Applications

### Lecture 1: Dijkstra's algorithm

### Ramin Zabih

Some slides from: K. Wayne





## Administrivia

- Web site is: <u>https://github.com/cornelltech/CS5112-F18</u>
  - As usual, this is pretty much all you need to know
- Course staff:
  - Instructors: Ramin Zabih (<u>rdz@cs.cornell.edu</u>) & Greg Zecchini (<u>gez3@cornell.edu</u>)
  - TA: Richard Bowen (<u>rsb349@cornell.edu</u>), TBA
  - Consultants/graders: Iris Zhang (<u>wz337@cornell.edu</u>), TBA



# **Basic information**

- CS5112 work is constant but not very time intensive
  - Homework every 2 weeks or so, quiz every week
- 1 prelim 10/25 and final 12/4, both in-class closed book
   Open book doesn't actually help in my experience
- Greg will teach the 5 evening clinics 6:30pm-8pm
- Greg and Ramin will lecture, with a few guest lectures
- We are working on getting consultants to help students who don't have a lot of programming experience



# Academic integrity

- Each student is expected to abide by the Cornell University Code of Academic Integrity
  - <u>https://theuniversityfaculty.cornell.edu/academic-integrity/</u>
- Any work submitted by a student in this course for academic credit will be the student's own work
  - Exception: you do the homework assignments in groups of two
- We take this seriously. Students have been expelled from Cornell for violations. Copying code is easy to catch.



# Today

- Clinic this evening (here!)
- HW1 out tonight, due in 2 weeks
  - Based primarily on today's lecture and clinic
- First quiz a week from today
- Placement exam available tonight, due in 24 hours
- If you were a CS major, possibly worth your time



# **Clinics schedule**

- Evening sessions to review some of the fundamentals underlying much of this course's content
- Attendance is mandatory
- Schedule (dates final, topics tentative):
  - 8/23 Graphs and Graph Algorithms
  - 8/30 Hashing and Related Data Structures
  - 9/6 Sorting and Searching
  - 9/20 Development tools (UNIX commands, Github, etc.)
  - 10/4 Cloud Development



# Course theme: algorithms and applications

- Algorithms are the key tool in CS, but without applications it's hard to appreciate their importance
- We will focus on 3 key application areas:
  - Cryptocurrency
  - AI (artificial intelligence)
  - AR/VR (augmented/virtual reality)
- BUT this is not a course about those applications
- Application of algorithms is often not obvious!



## Lecture Outline

- The shortest path problem
- Dijkstra's algorithm
- Applications: image editing and pirate grammar



## Two very common approaches in CS

- Given a problem where you are searching for a solution:
  - Try everything (exhaustive search)
  - Do what seems best at the moment, repeatedly (greedy algorithms)
- Exhaustive search (almost) never works on serious problems
- Greedy algorithms are widely used
  - Currently famous example: SGD for neural networks
- Note: there are other approaches we will cover
  - Such as dynamic programming



# The shortest path problem

- General version: given a graph with edge weights, a starting node s and a target t, find shortest path from s to t
- Claim: this problem is impossible to solve!



# Obvious application of shortest paths: airfare

- Nodes are cities, edges are direct flights, weights are airfare
- What is the **cheapest** way to get from LGA to Ithaca?
  - Presumably you can charter a plane





# Fixing the problem definition

- Suppose that there is a flight from Boise to El Paso, and back again, that the airline pays you \$1 to fly around
- Further, suppose that you can get to Boise (or El Paso)
- You can make an arbitrary amount of money by just flying back and forth!
- This is a cycle in the graph whose sum of weights is negative
- Easy solution: require positive edge weights
  - Or maybe detect negative cycles?



# Not so obvious applications

- Making fake photographs
- Speech recognition/predicting stock prices by DTW
- Pirate grammar!
- Modeling a Cornell student (at end of class)



# Making fake photographs

- Sneak preview: will cover this in the AR/VR section of CS5112
- How do we create images like this:



- Given an image, how do you cut out an object from it?
- You don't want to manually select the pixels



# Intelligent scissors

- Idea: shortest paths
  - E.N. Mortensen and W.A. Barrett, Interactive Segmentation with Intelligent Scissors, SIGGRAPH 1995
- Adobe calls this the "Magnetic Lasso"
- Video <u>here</u>
- More details in November!



## Dynamic Time Warping (DTW)









# **Rules of Pirate grammar**

- Pirates always start their sentences with "Barkeep!"
  - 90% of the time they next say "More" (i.e., they order)
  - 10% of the time they next say "Yer a" (i.e., they insult)
  - If they say "More", they next say:
    - 60% "Of your best"
    - 40% "Of the same"
- Lots more rules, discovered by experts in pirate linguistics
- Question: what sentence is a pirate most likely to say?



### Pirate grammar as a graph





## Simplified pirate grammar





# How to make this into shortest paths?

- On the surface this is not at all obvious
  - Which is why this is worth thinking about carefully
- What we actually need to determine is the probability of any individual sentence
  - Example: "Barkeep! More of your best grog!" = .9 \* .6 = .45
- So we look at all paths from the root to a leaf node
  - Each edge has a probability
  - Multiply these together and find the max
- This looks like "find the path where the product of the edges is maximized", not "find the shortest path from s to t"



## Easy part: Add a fake source and sink



- Red links have probability 1
- Now we need to find the "highest product path" from s to t



## Algebra to the rescue

- We want to maximize the product of edge probabilities
   Which are numbers between 0 and 1
- Instead we need to minimize the sum of edge weights
- We know that log is monotonic, and  $\log \prod_i p_i = \sum_i \log p_i$
- Maximize the product of edge probabilities = maximize the sum of log probabilities

– Which are negative:  $0 < p_i \le 1 \Rightarrow \log p_i \le 0$ 

• Maximizing anything is the same as minimizing its negative



### Algebra in action



 $\log_{10}(.9) \approx -0.046$  $\log_{10}(.1) = -1$ 



# Key property of shortest paths

• Suppose the shortest path from s to t goes via v

- Otherwise, we would take that "shortcut" instead, and create an even shorter path
- Considering s v t paths, only need shortest s v path
  - Don't need to try everything!



# Shortest paths by increasing budgets

- Here is the basic idea, which we will simply speed up
- Where can you fly from LGA on a \$1 budget?
  - Does that get you to Ithaca?
- If it does, you are done
- If not, add \$1 to your budget and do it again
- You can think of this as expanding a ball around s until you eventually get to t
  - Though we are doing this on a graph



# Example

- For \$1 can get to *u*
- For \$2 can also get to v
- Gray area shows budget at \$2
- At \$3 we can also get to x via u
- Key concepts:
  - Explored nodes:  $\{s, u, v\}$
  - Fringe:  $\{x, y, z\}$





## Key concepts

- Explored nodes: we know the cheapest way to get there
  - Shown as inside the gray zone
- Fringe nodes: adjacent to an explored node
- When we increase the budget we add a fringe node into the set of explored nodes
  - This is pretty inefficient, hold that thought
- Keep on doing this until t (i.e. Ithaca) is in the explored nodes



# Budget approach is crazy

- Suppose the cheapest flight from LGA is \$500
- In our example, imagine increasing by \$.01
  So we consider \$2.01, \$2.02, ...
- But we know that nothing will happen until we increase our budget to \$3
  - Why not just do this directly?





# Dijkstra's algorithm

- We maintain an explored set *S* with an invariant:
  - For each  $u \in S$  hold the **shortest** path from s to u, write this as d(u)
    - Both the distance and the actual path, see HW1
    - Easiest to just think about the distance d(u)
  - Add an unexplored node  $\boldsymbol{v}$  to  $\boldsymbol{S}$ 
    - But, which one to choose?
    - On the fringe of *S*, so we add just one edge



# Choice of edge for a fringe node

- The fringe node v can be adjacent to several nodes in S
  - If we choose to add v, pick the right node in S to connect it to





# Choice of fringe node

- If we pick v to add to S, we will connect it to the u in S that minimizes d(u) + the length of the (u, v) edge
  - Call this shortest path length  $\pi(v)$
  - Think of this as "cheapest way to add v to S"
  - But can we pick an arbitrary v to add?
- Can prove that this would break our invariant about *S*!
- Pick v with smallest  $\pi(v)$ , then add it to S with  $d(v) = \pi(v)$



### Shortest path example





# HW1 algorithm

• Start with  $S = \{s\}$ , all other nodes in Q

-d(s) = 0, else  $d(v) = \infty$  (i.e. upper bound)

- Pick v on fringe of S that minimizes  $\pi(v)$ 
  - I.e., the  $v \in Q$  with a neighbor in S that is cheapest to add to S
- On recursive call, we will have
  - $-d(v) = \mathbb{P}(v)$
  - -v is now in S, and no longer in Q
- Done when we pick target *t* 
  - Computes more than shortest s t path!



# Dijkstra's Shortest Path Algorithm

- Find shortest path from s to t.
- Blue edges: shortest path to a node within S.
- Green edges: what we would add for each fringe vertex.











### S = { s } Q = { 2, 3, 4, 5, 6, 7, † }





























#### S = { s, 2, 3, 4, 5, 6, 7 } Q = { † }



#### S = { s, 2, 3, 4, 5, 6, 7 } Q = { † }



#### S = { s, 2, 3, 4, 5, 6, 7, † } Q = { }



### S = { s, 2, 3, 4, 5, 6, 7, † } Q = { }



## Implementation notes

- There are many ways to speed this up in practice
- Graph representations
  - You will explore 2 of these in HW1
- Naïve Dijkstra with n nodes and m edges is O(mn)
- We need to remove from Q the smallest node v with smallest value of  $\pi(v)$ 
  - Priority queue implements remove-min in  $O(\log n)$
  - This makes Dijkstra run in  $O(m \log n)$  time



# Another class of examples

- Let's model student behavior over time (hourly basis)
- Students have 3 possible states:
  - Awake (A)
  - Sleeping (S)
  - Doing CS5112 homework (H)
- If you know their state at time t you know the probability of their other states at time t + 1
  - Example: A goes to A (.5), S (.49), H(.01)



# Trellis graph

- We want to find the most likely 12 hour day for a student
- At every time *t* there are 3 nodes, for A/S/H
- There are edges with transition probabilities
   Just like pirate grammar!
- So a day is a 12-node path through the graph
- This is closely related to a "Hidden Markov Model"
  - Widely used! Famous examples include speech, handwriting, computer vision, bioinformatics, etc.



# Example



- Important note: with S states and time T there are O(ST) nodes in the graph and O(S<sup>2</sup> T) edges
- So running time of naïve Dijkstra is  $O(S^3T^2)$
- Can reduce this to
   O(S<sup>2</sup> T) with dynamic
   programming (Viterbi)

