
CS5112: Algorithms and Data Structures for 
Applications

Ramin Zabih

Some figures from Wikipedia/Google image search

Lecture 10: From hashing to machine learning



Administrivia

• HW comments and minor corrections on Slack
• HW3 coming soon
• Non-anonymous survey coming re: speed of course, etc.



Office hours

• Prof Zabih: after lecture or by appointment
• Tuesdays 11:30-12:30 in Bloomberg 277 with @Julia
• Wednesdays 2:30-3:30 in Bloomberg 277 with @irisz
• Wednesdays 3:30-4:30 in Bloomberg 277 with @Ishan
• Thursdays 10-12 in Bloomberg 267 with @Fei Li



Today

• Universal hashing
– Recap: randomized quicksort

• From universal to perfect
• Learning to hash
• Nearest neighbor search



Quick impossibility proof

• Generally, proofs that there is no algorithm that can do X are 
quite complicated

• There is a simple one that follows naturally from Richard’s 
lecture last Thursday on compression

• Do (lossless) compression algorithm always work?
– I.e., reduce the size of a file?



Perfect & minimal hashing

• Choice of hash functions is data-dependent!
• Let’s try to hash 4 English words into the buckets 0,1,2,3

– E.g., to efficiently compress a sentence

• Words: {“banana”, “glib”, “epic”, “food”}
– Can efficiently say sentence like “epic glib banana food” = 3,2,1,0

• Can you construct a minimal perfect hash function that maps 
each of these to a different bucket?
– Needs to be efficient, not (e.g.) a list of cases



Recall: Quicksort

• Basic idea: pick a pivot element 𝑥𝑥 of the array, use it to divide 
the array into the elements ≤ 𝑥𝑥 or > 𝑥𝑥, then recurse

• Worst case: pivot is min or max element
– Complexity is 𝑂𝑂 𝑛𝑛2

– This often happens in practice (why?)

• What is the average case?
– In general, arguments about average case are much harder



Expectation of random variables

• Randomized quicksort: pick a random pivot
– Equivalent to randomizing the input then running (usual) quicksort

• Recall: a (discrete) random variable has different possible 
values with different probabilities
– Think of a coin, a die, or a roulette wheel
– Visualize as a histogram

• The expectation of a random variable is the weighted sum, 
where each value is weighted by its probability
– Example: expectation of a 6 sided die is 3.5

Presenter
Presentation Notes
Image from: https://www.omtexclasses.com/2015/02/the-distribution-of-random-variable.html



Average case quicksort

• The number of comparisons performed by randomized 
quicksort on an input of size 𝑛𝑛 is a random variable
– Small chance of 𝑂𝑂(𝑛𝑛) comparisons (great luck with pivot!) or 𝑂𝑂(𝑛𝑛2)

comparisons (terrible luck!)
– With some effort you can show that the expectation of this random 

variable is 𝑂𝑂(𝑛𝑛 log𝑛𝑛)



Universal hashing
• We can randomly generate a hash function ℎ

– This is NOT the same as the hash function being random
– Hash function is deterministic!
– Can re-do this if it turns out to have lots of collisions

• Assume input keys of fixed size (e.g., 32 bit numbers)
• Ideally ℎ will spread out the keys uniformly

𝑃𝑃 ℎ 𝑥𝑥 = ℎ 𝑦𝑦 | 𝑥𝑥 ≠ 𝑦𝑦 ≤
1

232
– Think of this as fixing 𝑥𝑥,𝑦𝑦|𝑥𝑥 ≠ 𝑦𝑦 and then picking ℎ randomly

• If we had such an ℎ, the expected number of collisions when we hash 𝑁𝑁
numbers is 𝑁𝑁

232



Universal hashing by matrix multiplication

• This would be of merely theoretical interest if we could not 
generate such an ℎ

• There’s a simple technique, not efficient enough to be practical
– More practical versions follow the same idea

• Now assume the inputs/outputs are 4 bit numbers/3 bit 
numbers respectively, i.e. inputs: 0-15, outputs: 0-7

• We will randomly generate a 3x4 array of bits, and hash by 
‘multiplying’ the input by this array



Universal hashing example

• We multiply using AND, and we add using parity
– Technically this is mod 2 arithmetic

1 0 1 1
0 1 1 0
1 0 1 1

1
0
1
0

=
0
1
0



Balls into bins

• There is an important underlying idea here
– Shows up surprisingly often

• Suppose we throw 𝑚𝑚 balls into 𝑛𝑛 bins
– Where for each ball we pick a bin at random
– How big do we need to make n so that with probability > 1

2
there are no 

collisions?
– This is the opposite of the birthday paradox 

• Answer: need 𝑛𝑛 ≈ 𝑚𝑚2

• So to avoid collisions with probability ½ we need our hash table to 
be about the square of the number of elements



Perfect hashing from universal hashing

• We can use this to create a perfect hash function
• Generate a random hash function ℎ

– Technically, from a universal family (like binary matrices)

• Use a “big enough” hash table, from before
– I.e., size is square of the number of elements

• Then the chance of a collision is < ½ 



Nearest neighbor search

• Fundamental problem in machine learning/AI: find something 
in the data similar to a query
– Selected examples: predicting purchases (Amazon/Netflix), avoiding 

fraudulent credit card transactions, finding undervalued stocks, etc.

• Easiest way to do classification (map items to labels)
• Important application: density estimation
• Exact versus approximate algorithms
• Techniques are often classical CS, including hashing



Problem definitions

• Input: data items 𝑋𝑋 = 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 , query 𝑞𝑞, distance function 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞, 𝑥𝑥)
– Typically in a vector space under Euclidean (𝑙𝑙2) norm

• Nearest neighbor (NN) search: arg min
𝑥𝑥∈𝑋𝑋

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞, 𝑥𝑥)
• K-nearest neighbor (KNN): find the closest K data items 
• R-near neighbor search: 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞, 𝑥𝑥 ≤ 𝑅𝑅}
• Approximate NN: if 𝑥𝑥∗ is the NN, find

{𝑥𝑥|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞, 𝑥𝑥 ≤ 1 + 𝜖𝜖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞, 𝑥𝑥∗)}



Approximate NN via hashing

• Normally collisions make a hash function bad
– In this application, certain collisions are good!

• Main idea: hash the data points so that nearby items end up in 
the same bucket
– At query time, hash the query and rerank the bucket elements

• Most famous technique is Locality Sensitive Hashing (LSH)



NN Density estimation

• Lots of practical questions boil down to density estimation
– Even if you don’t explicitly say you’re doing it!

• “What do typical currency fluctuations look like?”

• Your classes generally have some density in feature space
– Hopefully they are compact and well-separated

• Given a new data point, which class does it belong to?
– One hypothesis per class, maximize 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑐𝑐𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑),

• This requires the density


	CS5112: Algorithms and Data Structures for Applications
	Administrivia
	Office hours
	Today
	Quick impossibility proof
	Perfect & minimal hashing
	Recall: Quicksort
	Expectation of random variables
	Average case quicksort
	Universal hashing
	Universal hashing by matrix multiplication
	Universal hashing example
	Balls into bins
	Perfect hashing from universal hashing
	Nearest neighbor search
	Problem definitions
	Approximate NN via hashing
	NN Density estimation

