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Lecture 10: From hashing to machine learning



Administrivia

• HW comments and minor corrections on Slack
• HW3 coming soon
• Non-anonymous survey coming re: speed of course, etc.



Office hours

• Prof Zabih: after lecture or by appointment
• Tuesdays 11:30-12:30 in Bloomberg 277 with @Julia
• Wednesdays 2:30-3:30 in Bloomberg 277 with @irisz
• Wednesdays 3:30-4:30 in Bloomberg 277 with @Ishan
• Thursdays 10-12 in Bloomberg 267 with @Fei Li



Today

• Universal hashing
– Recap: randomized quicksort

• From universal to perfect
• Learning to hash
• Nearest neighbor search



Quick impossibility proof

• Generally, proofs that there is no algorithm that can do X are 
quite complicated

• There is a simple one that follows naturally from Richard’s 
lecture last Thursday on compression

• Do (lossless) compression algorithm always work?
– I.e., reduce the size of a file?



Perfect & minimal hashing

• Choice of hash functions is data-dependent!
• Let’s try to hash 4 English words into the buckets 0,1,2,3

– E.g., to efficiently compress a sentence

• Words: {“banana”, “glib”, “epic”, “food”}
– Can efficiently say sentence like “epic glib banana food” = 3,2,1,0

• Can you construct a minimal perfect hash function that maps 
each of these to a different bucket?
– Needs to be efficient, not (e.g.) a list of cases



Recall: Quicksort

• Basic idea: pick a pivot element 𝑥𝑥 of the array, use it to divide 
the array into the elements ≤ 𝑥𝑥 or > 𝑥𝑥, then recurse

• Worst case: pivot is min or max element
– Complexity is 𝑂𝑂 𝑛𝑛2

– This often happens in practice (why?)

• What is the average case?
– In general, arguments about average case are much harder



Expectation of random variables

• Randomized quicksort: pick a random pivot
– Equivalent to randomizing the input then running (usual) quicksort

• Recall: a (discrete) random variable has different possible 
values with different probabilities
– Think of a coin, a die, or a roulette wheel
– Visualize as a histogram

• The expectation of a random variable is the weighted sum, 
where each value is weighted by its probability
– Example: expectation of a 6 sided die is 3.5

Presenter
Presentation Notes
Image from: https://www.omtexclasses.com/2015/02/the-distribution-of-random-variable.html



Average case quicksort

• The number of comparisons performed by randomized 
quicksort on an input of size 𝑛𝑛 is a random variable
– Small chance of 𝑂𝑂(𝑛𝑛) comparisons (great luck with pivot!) or 𝑂𝑂(𝑛𝑛2)

comparisons (terrible luck!)
– With some effort you can show that the expectation of this random 

variable is 𝑂𝑂(𝑛𝑛 log𝑛𝑛)



Universal hashing
• We can randomly generate a hash function ℎ

– This is NOT the same as the hash function being random
– Hash function is deterministic!
– Can re-do this if it turns out to have lots of collisions

• Assume input keys of fixed size (e.g., 32 bit numbers)
• Ideally ℎ will spread out the keys uniformly

𝑃𝑃 ℎ 𝑥𝑥 = ℎ 𝑦𝑦 | 𝑥𝑥 ≠ 𝑦𝑦 ≤
1

232
– Think of this as fixing 𝑥𝑥,𝑦𝑦|𝑥𝑥 ≠ 𝑦𝑦 and then picking ℎ randomly

• If we had such an ℎ, the expected number of collisions when we hash 𝑁𝑁
numbers is 𝑁𝑁

232



Universal hashing by matrix multiplication

• This would be of merely theoretical interest if we could not 
generate such an ℎ

• There’s a simple technique, not efficient enough to be practical
– More practical versions follow the same idea

• Now assume the inputs/outputs are 4 bit numbers/3 bit 
numbers respectively, i.e. inputs: 0-15, outputs: 0-7

• We will randomly generate a 3x4 array of bits, and hash by 
‘multiplying’ the input by this array



Universal hashing example

• We multiply using AND, and we add using parity
– Technically this is mod 2 arithmetic

1 0 1 1
0 1 1 0
1 0 1 1

1
0
1
0

=
0
1
0



Balls into bins

• There is an important underlying idea here
– Shows up surprisingly often

• Suppose we throw 𝑚𝑚 balls into 𝑛𝑛 bins
– Where for each ball we pick a bin at random
– How big do we need to make n so that with probability > 1

2
there are no 

collisions?
– This is the opposite of the birthday paradox 

• Answer: need 𝑛𝑛 ≈ 𝑚𝑚2

• So to avoid collisions with probability ½ we need our hash table to 
be about the square of the number of elements



Perfect hashing from universal hashing

• We can use this to create a perfect hash function
• Generate a random hash function ℎ

– Technically, from a universal family (like binary matrices)

• Use a “big enough” hash table, from before
– I.e., size is square of the number of elements

• Then the chance of a collision is < ½ 



Nearest neighbor search

• Fundamental problem in machine learning/AI: find something 
in the data similar to a query
– Selected examples: predicting purchases (Amazon/Netflix), avoiding 

fraudulent credit card transactions, finding undervalued stocks, etc.

• Easiest way to do classification (map items to labels)
• Important application: density estimation
• Exact versus approximate algorithms
• Techniques are often classical CS, including hashing



Problem definitions

• Input: data items 𝑋𝑋 = 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 , query 𝑞𝑞, distance function 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞, 𝑥𝑥)
– Typically in a vector space under Euclidean (𝑙𝑙2) norm

• Nearest neighbor (NN) search: arg min
𝑥𝑥∈𝑋𝑋

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞, 𝑥𝑥)
• K-nearest neighbor (KNN): find the closest K data items 
• R-near neighbor search: 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞, 𝑥𝑥 ≤ 𝑅𝑅}
• Approximate NN: if 𝑥𝑥∗ is the NN, find

{𝑥𝑥|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞, 𝑥𝑥 ≤ 1 + 𝜖𝜖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞, 𝑥𝑥∗)}



Approximate NN via hashing

• Normally collisions make a hash function bad
– In this application, certain collisions are good!

• Main idea: hash the data points so that nearby items end up in 
the same bucket
– At query time, hash the query and rerank the bucket elements

• Most famous technique is Locality Sensitive Hashing (LSH)



NN Density estimation

• Lots of practical questions boil down to density estimation
– Even if you don’t explicitly say you’re doing it!

• “What do typical currency fluctuations look like?”

• Your classes generally have some density in feature space
– Hopefully they are compact and well-separated

• Given a new data point, which class does it belong to?
– One hypothesis per class, maximize 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑐𝑐𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑),

• This requires the density
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