
CS5112: Algorithms and Data Structures for
Applications

Ramin Zabih

Some figures from: Wikipedia/Google image search;
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Lecture 13: Streaming algorithms

Administrivia

• Reminder: HW comments and minor corrections on Slack

– Important announcements via email (best efforts)

• Q6 out tonight

• HW3 (and HW2!) delayed due to grading software issues

• Anonymous survey coming re: speed of course, etc.

Today

• Comments about the prelim!

• Six approximate algorithms for histograms and NN

Prelim comments

• NOTHING TODAY IS AUTHORITATIVE (YET)

• Closed book, multiple choice and short answer

• I will give example questions throughout today’s lecture

Online histogram approximations

• Many AI/ML applications hinge on understanding the
distribution of your input data

– Classification is just one example

• Classically we assume that all the input data is available

– You can run an offline algorithm over it

– Then do NN classification, density estimation, etc.

• This assumption is often wrong: data comes streaming in

– And you cannot afford to store the entire data set

Some natural histogram queries

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Find all elements
with frequency > 0.1%

Top-k most frequent elements

What is the frequency
of element 3? What is the total frequency

of elements between 8 and 14?

How many elements have non-zero frequency?

Why approximation?

• Suppose you want an (exact) histogram of your data

• This requires space linear in the number of data points
– Which is intractable for many internet applications!

• Examples: IP addresses for DDOS detection; most popular page/item to buy

• So instead we will use a small amount of space but solve the
problem approximately
– But, not precisely the same problem

• Instead of computing the histogram we will look at several key
properties of a histogram we can efficiently approximate
– Typically with constant or logarithmic space and time

Relevant quantities to compute

• Majority: if there is a single item comprising more than half
the input stream, find it

• Frequent items: find all items that comprise more than a given
percent 𝜙 of the input stream

– Approximate version: find all items that comprise between 𝜙 − 𝜖 and
𝜙 percent of the input stream (exact when 𝜖 = 0)

– Recent version: find and update the most recent popular items

• Distinct items: how many different items are there?

1. Boyer-Moore majority algorithm

2. Misra-Gries

• Generalization of Boyer-Moore majority algorithm

• Store 𝑘 − 1 counters, for a parameter 𝑘

– Larger 𝑘 means more space and accuracy

• Any item that appears more than
𝑛

𝑘
times in the input stream

of size 𝑛 will be present when the algorithm terminates

• If 𝑘 = 1/𝜖 then each count is at most 𝜖𝑛 below its true value

Misra-Gries algorithm in action

Finding the Frequent Items in Streams of Data, Cormode and Hadjieleftheriou, CACM 52(10), October 2009

3. Find popular recent items

• Want to be able to naturally update this over time

– Think of popular: movies, shopping items, web pages, etc.

• We could run, e.g., Misra-Gries on a sliding window

– This is both impractical and wrong

• Wrong because the importance of an item should not “fall off a
cliff” when it moves outside of our window

Weighted average in a sliding window

• Computing the average of the last 𝑘 inputs can be viewed as a

dot product with a constant vector 𝑣 =
1

𝑘
,
1

𝑘
, … ,

1

𝑘

• Sometimes called a box filter

– Easy to visualize

• This is also a natural way to smooth, e.g., a histogram

– To average together adjacent bins, 𝑣 = [
1

3
,
1

3
,
1

3
]

• This kind of weighted average has a famous name

Decaying windows

• Let our input at time 𝑡 be 𝑎1, 𝑎2, … , 𝑎𝑡
• With a box filter over all of these elements we computed

1

𝑡

𝑖=0

𝑡−1

𝑎𝑡−𝑖

• Instead let us pick a small constant 𝑐 and compute

ො𝑎𝑡 =

𝑖=0

𝑡−1

𝑎𝑡−𝑖 1 − 𝑐 𝑖

Easy to update this

• Update rule is simple, let the current dot product be ො𝑎𝑡
ො𝑎𝑡+1 = 1 − 𝑐 ො𝑎𝑡 + 𝑎𝑡+1

• This downscales the previous elements correctly, and the new
element is scaled by 1 − 𝑐 0 = 1

• This avoids falling off the edge

• Gives us an easy way to find popular items

4. Popular items with decaying windows

• We keep a small number of weighted sum counters

• When a new item arrives for which we already have a counter,
we update it using decaying windows, and update all counters

• How do we avoid getting an unbounded number of counters?

• We set a threshold, say ½, and if any counter goes below that
value we throw it away

• The number of counters is bounded by
2

𝑐

How many distinct items are there?

• This tells you the size of the histogram, among other things

• To solve this problem exactly requires space that is linear in the
size of the input stream

– Impractical for many applications

• Instead we will compute an efficient estimate via hashing

