
CS5112: Algorithms and Data Structures for
Applications

Ramin Zabih

Some content from: Piotr Indyk; Wikipedia/Google image search;
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Lecture 14: Exponential decay; convolution

Administrivia

• Q7 delayed due to Columbus day holiday

• HW3 out but short, can do HW in groups of 3 from now on

• Class 10/23 will be prelim review for 10/25

– Greg lectures on dynamic programming next week

• Anonymous survey out, please respond!

• Automatic grading apology

Survey feedback

Automatic grading apology

• In general students should not have a grade revised downward

– Main exception is regrade requests

• Automatic grading means that this sometimes happened

• At the end, we decided that the priority was to assign HW
grades based on how correct the code was

• Going forward, please treat HW grades as tentative grades

– We will announce when those grades are finalized

– After, they will only be changed under exceptional circumstances

Today

• Two streaming algorithms

• Convolution

Some natural histogram queries

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Find all elements
with frequency > 0.1%

Top-k most frequent elements

What is the frequency
of element 3? What is the total frequency

of elements between 8 and 14?

How many elements have non-zero frequency?

Streaming algorithms (recap)

1. Boyer-Moore majority algorithm

2. Misra-Gries frequent items

3. Find popular recent items (box filter)

4. Find popular recent items (exponential window)

5. Flajolet-Martin number of items

Weighted average in a sliding window

• Computing the average of the last 𝑘 inputs can be viewed as a

dot product with a constant vector 𝑣 =
1

𝑘
,
1

𝑘
, … ,

1

𝑘

• Sometimes called a box filter

– Easy to visualize

• This is also a natural way to smooth, e.g., a histogram

– To average together adjacent bins, 𝑣 = [
1

3
,
1

3
,
1

3
]

• This kind of weighted average has a famous name: convolution

Decaying windows

• Let our input at time 𝑡 be 𝑎1, 𝑎2, … , 𝑎𝑡
• With a box filter over all of these elements we computed

1

𝑡
෍

𝑖=0

𝑡−1

𝑎𝑡−𝑖

• Instead let us pick a small constant 𝑐 and compute

ො𝑎𝑡 = ෍

𝑖=0

𝑡−1

𝑎𝑡−𝑖 1 − 𝑐 𝑖

Easy to update this

• Update rule is simple, let the current dot product be ො𝑎𝑡
ො𝑎𝑡+1 = 1 − 𝑐 ො𝑎𝑡 + 𝑎𝑡+1

• This downscales the previous elements correctly, and the new
element is scaled by 1 − 𝑐 0 = 1

• This avoids falling off the edge

• Gives us an easy way to find popular items

4. Popular items with decaying windows

• We keep a small number of weighted sum counters

• When a new item arrives for which we already have a counter,
we update it using decaying windows, and update all counters

• How do we avoid getting an unbounded number of counters?

• We set a threshold, say ½, and if any counter goes below that
value we throw it away

• The number of counters is bounded by
2

𝑐

How many distinct items are there?

• This tells you the size of the histogram, among other things

• To solve this problem exactly requires space that is linear in the
size of the input stream

– Impractical for many applications

• Instead we will compute an efficient estimate via hashing

5. Flajolet-Martin algorithm

• Basic idea: the more different elements we see, the more
different hash values we will see

– We will pick a hash function that spreads out the input elements

– Typically uses universal hashing

Flajolet-Martin algorithm

• Pick a hash function ℎ that maps each of the 𝑛 elements to at
least log2 𝑛 bits

• For input 𝑎, let 𝑟(𝑎) be the number of trailing 0s in ℎ(𝑎)

– 𝑟(𝑎) = position of first 1 counting from the right

– E.g., say ℎ(𝑎) = 12, then 12 is 1100 in binary, so 𝑟(𝑎) = 2

• Record 𝑅 = the maximum 𝑟(𝑎) seen

• Estimated number of distinct elements = 2𝑅

– Anyone see the problem here?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

14

Why It Works: Intuition

• Very rough intuition why Flajolet-Martin works:

– ℎ(𝑎) hashes 𝑎 with equal probability to any of 𝑛 values

– Sequence of (log2 𝑛) bits; 2−𝑟 fraction of 𝑎′s have tail of 𝑟 zeros

• About 50% hash to ***0

• About 25% hash to **00

• So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have
probably seen about 4 distinct items so far

– Hash about 2𝑟 items before we see one with zero-suffix of length r

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

15

Convolution

• Weighted average with a mask/stencil/template
– Dot product of vectors

• Many important properties and applications

• Symmetric in the inputs

• Equivalent to linear shift-invariant systems
– “Well behaved”, in a certain precise sense

• Primary uses are smoothing and matching

• This is the “C” in “CNN”

Local averaging in action

Smoothing parameter effects

Matched filters

• Convolution can be used to find pulses

– This is actually closely related to smoothing

• How do we find a known pulse in a signal? Convolve the signal
with our template!

– E.g. to find something in the signal that looks like [1 6 -10] we
convolve with [1 6 -10]

• Question: what sense does this make?

– Anecdotally it worked for finding boxes

Box finding example

Pulse finding example

Why does this work?

• Some nice optimality properties, but the way I described it, the
algorithm fails

• Idea: the [1 6 -10] template gives biggest response when signal
is [… 1 6 -10 …]
– Value is 137 at this point

• But is this actually correct?
– You actually need both the template and the input to have a zero

mean and unit energy (sum of squares)
• Easily accomplished: subtract -1, then divide by 137, get 1/137 * [2 7 -9]

Geometric intuition

• Taking the dot product of two vectors
– Recall 𝑎 𝑏 𝑐 ⋅ [𝑒 𝑓 𝑔] = 𝑎𝑒 + 𝑏𝑓 + 𝑐𝑔

– Basically the projection of a vector on another

• The normalized vector with the biggest projection on x is, of
course: x!

23

