Lecture 14: Exponential decay; convolution

Ramin Zabih

Some content from: Piotr Indyk; Wikipedia/Google image search;
Administrivia

- Q7 delayed due to Columbus day holiday
- HW3 out but short, can do HW in groups of 3 from now on
- Class 10/23 will be prelim review for 10/25
 - Greg lectures on dynamic programming next week
- Anonymous survey out, please respond!
- Automatic grading apology
Survey feedback

1. How do you find the pace of lectures? (3 = just right)

41 responses

- 3 (7.3%) rate it too slow
- 6 (14.6%) rate it slightly too slow
- 21 (51.2%) rate it just right
- 10 (24.4%) rate it slightly too fast
- 1 (2.4%) rate it too fast
Automatic grading apology

- In general students should not have a grade revised downward
 - Main exception is regrade requests
- Automatic grading means that this sometimes happened
- At the end, we decided that the priority was to assign HW grades based on how correct the code was
- Going forward, please treat HW grades as tentative grades
 - We will announce when those grades are finalized
 - After, they will only be changed under exceptional circumstances
Today

- Two streaming algorithms
- Convolution
Some natural histogram queries

- Top-k most frequent elements
- Find all elements with frequency > 0.1%
- What is the frequency of element 3?
- What is the total frequency of elements between 8 and 14?
- How many elements have non-zero frequency?
Streaming algorithms (recap)

1. Boyer-Moore majority algorithm
2. Misra-Gries frequent items
3. Find popular recent items (box filter)
4. Find popular recent items (exponential window)
5. Flajolet-Martin number of items
Weighted average in a sliding window

• Computing the average of the last k inputs can be viewed as a dot product with a constant vector $v = \left[\frac{1}{k}, \frac{1}{k}, \ldots, \frac{1}{k} \right]$

• Sometimes called a box filter
 – Easy to visualize

• This is also a natural way to smooth, e.g., a histogram
 – To average together adjacent bins, $v = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right]$

• This kind of weighted average has a famous name: convolution
Decaying windows

• Let our input at time t be $\{a_1, a_2, \ldots, a_t\}$

• With a box filter over all of these elements we computed

$$ \frac{1}{t} \sum_{i=0}^{t-1} a_{t-i} $$

• Instead let us pick a small constant c and compute

$$ \hat{a}_t = \sum_{i=0}^{t-1} a_{t-i} (1 - c)^i $$
Easy to update this

- Update rule is simple, let the current dot product be \hat{a}_t
 \[\hat{a}_{t+1} = (1 - c)\hat{a}_t + a_{t+1} \]
- This downscales the previous elements correctly, and the new element is scaled by $(1 - c)^0 = 1$
- This avoids falling off the edge
- Gives us an easy way to find popular items
4. Popular items with decaying windows

• We keep a small number of weighted sum counters
• When a new item arrives for which we already have a counter, we update it using decaying windows, and update all counters
• How do we avoid getting an unbounded number of counters?
• We set a threshold, say $\frac{1}{2}$, and if any counter goes below that value we throw it away
• The number of counters is bounded by $\frac{2}{c}$
How many distinct items are there?

• This tells you the size of the histogram, among other things
• To solve this problem exactly requires space that is linear in the size of the input stream
 – Impractical for many applications
• Instead we will compute an efficient estimate via hashing
5. Flajolet-Martin algorithm

- Basic idea: the more different elements we see, the more different hash values we will see
 - We will pick a hash function that spreads out the input elements
 - Typically uses universal hashing
Flajolet-Martin algorithm

- Pick a hash function h that maps each of the n elements to at least $\log_2 n$ bits
- For input a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) =$ position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$
- Record $R =$ the maximum $r(a)$ seen
- Estimated number of distinct elements $= 2^R$
 - Anyone see the problem here?
Why It Works: Intuition

• Very rough intuition why Flajolet-Martin works:
 – $h(a)$ hashes a with equal probability to any of n values
 – Sequence of $(\log_2 n)$ bits; 2^{-r} fraction of a’s have tail of r zeros
 • About 50% hash to ***0
 • About 25% hash to **00
 • So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 – Hash about 2^r items before we see one with zero-suffix of length r
Convolution

- Weighted average with a mask/stencil/template
 - Dot product of vectors
- Many important properties and applications
- Symmetric in the inputs
- Equivalent to linear shift-invariant systems
 - “Well behaved”, in a certain precise sense
- Primary uses are smoothing and matching
- This is the “C” in “CNN”
Local averaging in action
Smoothing parameter effects
Matched filters

- Convolution can be used to find pulses
 - This is actually closely related to smoothing
- How do we find a known pulse in a signal? Convolve the signal with our template!
 - E.g. to find something in the signal that looks like [1 6 -10] we convolve with [1 6 -10]
- Question: what sense does this make?
 - Anecdotally it worked for finding boxes
Box finding example
Pulse finding example
Why does this work?

• Some nice optimality properties, but the way I described it, the algorithm fails

• Idea: the [1 6 -10] template gives biggest response when signal is [... 1 6 -10 ...]
 – Value is 137 at this point

• But is this actually correct?
 – You actually need both the template and the input to have a zero mean and unit energy (sum of squares)
 • Easily accomplished: subtract -1, then divide by 137, get 1/137 * [2 7 -9]
Geometric intuition

• Taking the dot product of two vectors
 – Recall \([a \ b \ c] \cdot [e \ f \ g] = ae + bf + cg\)
 – Basically the projection of a vector on another

\[
\begin{align*}
&\text{A} \\
&\theta \\
&|A| \cos \theta \\
&\text{B}
\end{align*}
\]

• The normalized vector with the biggest projection on x is, of course: x!