
CS5112: Algorithms and Data Structures for
Applications

Ramin Zabih

Some content from: Wikipedia/Google image search; Harrington;
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Lecture 19: Association rules

Lecture Outline

• From last time: course grades, SimHash

• From supervised to unsupervised learning

• Some useful logical identities

• Frequent item set data mining

• The Apriori algorithm

Course grades

• The below is NOT a promise, just an educated guess

• Typically in a graduate course like CS5112, most students get
some kind of an A or B

Angle similarity via SimHash

• Angle similarity via projection onto random vector

– VERY important for machine learning, etc.

• Pick a random unit vector 𝑟, and check if the two inputs
𝑥, 𝑦 are on the same side of the half-space it defines

• Compute the dot products 〈𝑥, 𝑟〉, 〈𝑦, 𝑟〉

– Do they have the same sign?

Dot product and hyperplanes

• For simplicity only consider vectors from the origin

• A vector 𝑣 defines a hyperplane of vectors perpendicular to 𝑣

– I.e., those vectors 𝑤 | 〈𝑣, 𝑤〉 = 0

• Divides vectors into those on either side of the hyperplane

– Same side as 𝑣:𝑤| 𝑣, 𝑤 > 0 so hash value is +1

– Opposite side of 𝑣:𝑤| 𝑣, 𝑤 < 0 so hash value is 0

• Easy to draw the 2D case

A bad LSH function and how to fix it

• This gives us a single bit per vector

• Which generates a really lousy LSH hash function

– It only has 2 buckets!

• What goes wrong and how do we fix it?

• Same slice of the pizza!

2D case of SimHash

𝑣 = 1 0 1

𝑣

Unsupervised learning

• What interesting things can we learn in the absence of a
labeled data set?

• Labeled data is expensive

– Semi-supervised learning

• Main unsupervised areas are:

– Clusters (see: k-means algorithm)

– Low dimensional structure (not covered in CS5112)

– Associations (today’s lecture)

Useful logical identities

• Consider true/false propositions 𝑝, 𝑞, 𝑟, …

• The below can be proved by, e.g. truth tables

𝑝 ⇒ 𝑞 ≡ ¬𝑝 ∨ 𝑞 ≡ ¬𝑞 ⇒ ¬𝑝

𝑝 ∧ 𝑞 ⇒ 𝑟 ≡ (𝑝 ∧ ¬𝑟 ⇒ ¬𝑞)

(𝑝 ⇒ 𝑞 ∧ 𝑟) ⊢ (𝑝 ⇒ 𝑞)

Example transactions

• Rule discovered: Coke→Diaper

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Things can go badly wrong…

Association rules

• Learn rules that are supported by your data

• Rules are co-occurrence, not causality!

– Very clear in the propositional formulation

• Beer and diapers legend

– What do you do with an association rule?

• In practice you don’t want too many of them

– Need to act on them

Support and confidence

• Key ideas for association rules
• Have both a computational and probabilistic interpretation
• Support of an itemset is the percentage of the transactions

containing that itemset

– In our example, support of Milk is
4

5
= .8

– Support of a rule is the support of LHS
• Not all papers use this definition, sometimes it’s the support of LHS ∪ RHS

• Confidence of an association rule is percentage of transactions
where that rule is correct

– Confidence of Milk→Bread is
3

4
= .75

Probabilistic view

• “The basket contains beer” can be viewed as a proposition 𝑝,
or as a 0/1 random variable

• Consider rule: 𝑝 generally follows from 𝑞 ∧ 𝑟

• Can be viewed as the idea that 𝑃(𝑝|𝑞, 𝑟) is large

– Support is joint probability 𝑃(𝑝, 𝑞, 𝑟)

• Confidence is conditional probability 𝑃(𝑝|𝑞, 𝑟)

– Note that 𝑃 𝑝, 𝑞, 𝑟 = 𝑃 𝑝 𝑞, 𝑟 𝑃(𝑞, 𝑟)

Association rule learning

• All rules with support ≥ 𝑠 and confidence ≥ 𝑐

• We focus on finding sets with large support

– Called frequent (item) sets

• Many rules from same item set, different 𝑐
{Milk,Diaper} → {Beer} (𝑠=0.6, 𝑐=0.67)
{Milk,Beer} → {Diaper} (s=0.4, 𝑐=1.0)
{Diaper,Beer} → {Milk} (s=0.6, 𝑐=0.67)
{Beer} → {Milk,Diaper} (s=0.6, 𝑐=0.67)
{Diaper} → {Milk,Beer} (𝑠=0.6, 𝑐=0.67)
{Milk} → {Diaper,Beer} (𝑠=0.8, 𝑐=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Beyond confidence

• Sometimes other measures are useful
• Motivating example:

• 𝑐 = 𝑃 Coffee Tea = 0.75
– But 𝑃 Coffee = 0.9
– And 𝑃 Coffee ¬Tea = 0.9375

• Lift is one solution:
𝑃 Coffee Tea

𝑃 Coffee
=

0.75

0.9
< 1

Coffee ¬Coffee

Tea 15 5 20

¬Tea 75 5 80

90 10 100

PB&J example

• Item set is {𝑃, 𝐽, 𝐵}

• Consider the rule {𝑃, 𝐽}→𝐵

• Support of 0.03 for LHS means 𝑃, 𝐽 in 3% of transactions

• Confidence of 0.82 for rule means 82% of transactions that
purchase 𝑃, 𝐽 also purchase 𝐵

• If 𝐵 had support of 43% then the rule has a lift of 1.95

Fields of sets

• Consider a set with 𝑛 elements

• We can arrange all of its 2𝑛 subsets into a lattice

– Via union and intersection

• This structure is called a field of sets

Example

Harrington, Machine Learning in Action

The A Priori Principle

• Problem: exponentially many item sets

• As we grow an item set, its support goes down

• If an item set is frequent, all of its subsets are frequent

• If an item set is infrequent, all of its supersets are infrequent

Example

Harrington, Machine Learning in Action

Apriori algorithm

• Given a support threshold and a set of transactions

• Find frequent single items

• To go from frequent 𝑘 tuples to frequent 𝑘 + 1 tuples,
combine with frequent single items for candidates

– Ex: from 2-tuples to 3-tuples

• Stop when no more frequent tuples

From frequent item sets to rules

• In bricks and mortar situations, usually require about 1%
support and 50% confidence

• Given a frequent item set with 𝑘 elements, there are 𝑘 −
1 logically equivalent rules

– Of the form 𝑝1 ∧ 𝑝2 ∧ ⋯𝑝𝑘−1 ⇒ 𝑝𝑘

• We know that the LHS is frequent, so we can easily calculate
the confidence of this rule

Apriori plus and minus

• Plus: Fast, runs on huge data sets, easy to interpret

• Rules with high confidence but low support are missed

– Classic example: vodka→ caviar

Extension: PCY algorithm

• Park-Chen-Yu speedup of apriori

• Use a hash table to store counts of pairs

• Hash on the pair

• Collisions: may think something is frequent even if it is not

– But you can use hashing to eliminate a ton of computation

• What does this remind you of?

