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Lecture 21: Algorithmic issues in tracking



Lecture Outline

• Applying mean shift to tracking
• Expectation maximization
• RANSAC
• M-estimation
• Least squares fitting



Mean shift segmentations



Mean shift tracking example



Tracking overview

• Suppose we want to figure out how fast and what direction (L-
R) a robot is moving

• We can just run segmentation on consecutive frames
– Not too much changes in 1/30 of a second
– Usually you can ‘carry over’ some information from previous frame 



The ideal robot
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The real (lying) robot
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Real problem is much worse

• Some of the time we will track a different object
• This gives us outliers (from other object)

– Versus inliers (from the object we want to track)



Simplified tracking problem – Line fitting

• Goal: To group a bunch of points into two “best-fit” line 
segments
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“Chicken-egg problem”

• If we knew which line each point belonged to, we could 
compute the best-fit lines.
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Chicken-egg problem

• If we knew what the two best-fit lines were, we could find out 
which line each point belonged to.
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Expectation-Maximization (EM)

• Initialize: Make random guess for lines
• Repeat:

– Find the line closest to each point and group into two sets. 
(Expectation Step)

– Find the best-fit lines to the two sets (Maximization Step)
– Iterate until convergence

• The algorithm is guaranteed to converge to some local optima
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Example:
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Example:
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Example:
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Example:
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Example:
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Converged!



Expectation maximization

• Standard use case is to separate two gaussians (MOG)
• If we knew which data is water and which is beer, we could 

compute the mean and variance separately
• If we know the mean and variance were for beer and water, we 

could figure out which data is water and which is beer
• But we don’t know anything!
• So, just like in k-means, we guess and iterate
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RANSAC algorithm

Run k times:
(1) draw n samples randomly
(2) fit parameters Θ with these n samples
(3) for each of other N-n points, calculate   

its distance to the fitted model, count the   
number of inlier points, c

Output Θ with the largest c

How many times?
How big? 
Smaller is better

How to define?
Depends on the problem.



Example: line fitting



Example: line fitting
n=2



Model fitting



Measure distances



Count inliers
c=3



Another trial
c=3



The best model
c=15



RANSAC failure mode

Not every all-inlier sample gives a 
model consistent with all inliers



General model fitting problem

• We have some data points (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and some possible models, 
each of which has some parameters 𝜃𝜃
– Example: line fitting, 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏
– A model predicts 𝑀𝑀(𝑥𝑥;𝜃𝜃)

• What set of parameters gives the best fit to the data?
• For a particular θ, the residuals are 
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Least squares fit

• The least squares fit says that the best fit minimizes
∑𝑖𝑖 𝑟𝑟𝑖𝑖2

– Sum of the squared residuals

• At the correct selection of points, what are the residuals?
– They are generally small and gaussian
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1 bad point can ruin your whole line

Example c/o Kim Boyer, OSU



Problem is subtle

• You can’t simply do an LS fit and then declare the worst-fitting 
point to be “bad”
– There are examples where the bad data is fit better than the good 

data

• Robust statistics addresses this problem
– A robust fitting method tolerates outliers

• Obviously, LS is not robust

– Note that in vision, the term “robust” sometimes simply means 
“good”
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Robust model fitting

• There are two problems with the LS fit
– We square the residuals
– We sum up these squares

• The main approaches in robust statistics address each of these 
problems
– The problem with squaring the residuals is that the squared values 

get too large
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M-estimation

• Suppose that our measure of goodness of fit is ∑𝑖𝑖 𝜌𝜌(𝑟𝑟𝑖𝑖), where

– Here, 𝑠𝑠 is a scale parameter
– All residuals worse than s count like s

• The scale parameter essentially controls the boundary 
between inliers and outliers
– We expect outliers to have residuals larger than s, but not inliers
– How do we pick s?
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Computing a robust fit

• It’s possible to perform M-estimation fairly efficiently using a 
variant of least squares

• Think of 𝐴𝐴𝑧𝑧, where 𝐴𝐴 is a matrix and 𝑧𝑧 is a vector, as a linear 
combination of the columns of 𝐴𝐴, weighted by elements of 𝑧𝑧

• Example for the model 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏 and data (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
– 𝐴𝐴 has (𝑥𝑥𝑖𝑖 1) rows, one per data point
– 𝑧𝑧 = 𝑚𝑚 𝑏𝑏 𝑇𝑇

𝐴𝐴𝑧𝑧 = 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 𝑇𝑇 = 𝑑𝑑
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Computing a LS fit

• If we consider all possible choices of 𝑧𝑧 we span a subspace.
• The solution to 𝐴𝐴𝑧𝑧 = 𝑑𝑑 is the “coordinates” of 𝑑𝑑 in terms of 

the columns of 𝐴𝐴
• What if 𝑑𝑑 isn’t in the subspace? 
• We can ask for the point in the subspace that is as close as 

possible to 𝑑𝑑 (the least squares fit)
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Solving least squares

• The least squares solution to 𝐴𝐴𝑧𝑧 = 𝑑𝑑 is 
arg min

𝑧𝑧
| 𝑑𝑑 − 𝐴𝐴𝑧𝑧 |

• An elegant result, due to Gauss, is that the solution to this is 
the pseudoinverse 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑑𝑑
– Easy to re-derive: 𝐴𝐴𝑇𝑇𝐴𝐴 is square!

• If we weight each residual by 𝑤𝑤𝑖𝑖 we get 
arg min

𝑧𝑧
𝑊𝑊 𝑑𝑑 − 𝐴𝐴𝑧𝑧 = 𝐴𝐴𝑇𝑇𝑊𝑊2𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑊𝑊𝑑𝑑

– Here, 𝑊𝑊 is a diagonal matrix of 𝑤𝑤𝑖𝑖
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Iterative reweighted least squares

• IRLS algorithm
– Start with all weights being 1
– Compute least squares fit and residuals
– Adjust 𝑊𝑊 to reduce the weighting of the large residuals
– Re-fit and repeat
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