
CS5112: Algorithms and Data Structures for
Applications

Ramin Zabih

Some figures from Wikipedia/Google image search

Lecture 3: Hashing

Administrivia

• Web site is: https://github.com/cornelltech/CS5112-F18
– As usual, this is pretty much all you need to know

• Quiz 1 out today, due Friday 11:59PM
– Very high tech!
– Coverage through Greg’s lecture on Tuesday

• TA’s and consultants coming shortly
• We have a slack channel

https://github.com/cornelltech/CS5112-F18

Today

• Clinic this evening (here), Greg on hashing
• Associative arrays
• Efficiency: Asymptotic analysis, effects of locality
• Hashing
• Additional requirements for cryptographic hashing
• Fun applications of hashing!

– Lots of billion-dollar ideas

Associative arrays

• Fundamental data structure in CS
• Holds (key,value) pairs, a given key appears at most once
• API for associative arrays (very informal!)

– Insert(k,v,A)->A’, where A’ has the new pair (k,v) along with A
– Lookup(k,A)->v, where v is from the pair (k,v) in A

• Lots of details we will ignore today
– Avoiding duplication, raising exceptions, etc.

• “Key” question: how to do this fast

How computer scientists think about efficiency

• Two views: asymptotic and ‘practical’
• Generally give the same result, but math vs engineering
• Asymptotic analysis, a.k.a. “big O”

– Mathematical treatment of algorithms
– Worst case performance
– Consider the limit as input gets larger and larger

Big O notation: main ideas

• 2 big ideas:
– [#1] Think about the worst case (don’t assume luck)
– [#2] Think about all hardware (don’t assume Intel/AMD)

• Example: find duplicates in array of 𝑛𝑛 numbers, dumbly
– For each element, scan the rest of the array
– We scan 𝑛𝑛 − 1,𝑛𝑛 − 2, … elements [#2]

– So we examine ∑𝑖𝑖=1𝑛𝑛−1 𝑖𝑖 elements, which is 𝑛𝑛−1 𝑛𝑛−2
2

– Which is ugly… but what happens as 𝑛𝑛 → ∞? [#1]
• Write this as 𝑂𝑂(𝑛𝑛2)

Some canonical complexity classes

• Constant time algorithms, 𝑂𝑂(1)
– Running time doesn’t depend on input
– Example: find the first element in an array

• Linear time algorithms, 𝑂𝑂(𝑛𝑛)
– Constant work per input item, in the worst case
– Example: find a particular item in the array

• Quadratic time algorithms, 𝑂𝑂(𝑛𝑛2)
– Linear work per input item, such as find duplicates

• Clever variants of quadratic time algorithms, 𝑂𝑂(𝑛𝑛 log𝑛𝑛)
– A few will be discussed in the clinic tonight

Big O notation and its limitations

• Overall, practical performance correlates very strongly with
asymptotic complexity (= big O)
– The exceptions to this are actually famous

• Warning: this does not mean that on a specific input an
𝑂𝑂(1) algorithm will be faster than an 𝑂𝑂(𝑛𝑛2) one!

Linked lists

8 4 1 3

Linked lists as memory arrays

• We’ll implement linked lists using a memory array
– This is very close to what the hardware does

• A linked list contains “cells”
• A value, and where the next cell is

– We will represent cells by a pair of adjacent array entries

1 2 3 4 5 6 7 8 9

Example

8 4 1 3

8 5 1

1 2 3

7 4 3

4 5 6

3 0 0

7 8 9

Locality and efficiency

• Locality is important for computation due to physics
– The amount of information you can pack into a given area

• The hardware is faster when your memory references are local
in terms of time and space

• Time locality: access the same data repeatedly, then move on
• Space locality: access nearby data (in memory)

Memory hierarchy in a modern CPU

Complexity of associative array algorithms

DATA STRUCTURE INSERT LOOKUP

Linked list 𝑂𝑂(𝑛𝑛) 𝑂𝑂(𝑛𝑛)
Binary search tree (BST) 𝑂𝑂(𝑛𝑛) 𝑂𝑂(𝑛𝑛)
Balanced BST 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(log𝑛𝑛)
Hash table 𝑂𝑂(1) 𝑂𝑂(1)

So, why use anything other than a hash table?

Hashing in one diagram

What makes a good hash function?

• Almost nobody writes their own hash function
– Like a random number generator, very easy to get this wrong!

• Deterministic
• Uniform

– With respect to your input!
– Technical term for this is entropy

• (Sometimes) invariant to certain changes
– Example: punctuation, capitalization, spaces

Examples of good and bad hash functions

• Suppose we want to build a hash table for CS5112 students
• Is area code a good hash function?
• How about zip code?
• Social security numbers?

– https://www.ssa.gov/history/ssn/geocard.html

• What is the best and worst hash function you can think of?

Cryptographic hashing

• Sample application: bragging that you’ve solved HW1
– How to show this without sharing your solution?

• Given the output, hard to compute an input with that output
– Given 𝑚𝑚 = ℎ𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) hard to find 𝑠𝑠′:𝑚𝑚 = ℎ𝑎𝑎𝑎𝑎𝑎(𝑠𝑠′)
– Sometimes called a 1-way function

• Given the input, hard to find a matching input
– Given 𝑠𝑠 hard to find 𝑠𝑠′:ℎ𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 = ℎ𝑎𝑎𝑎𝑎𝑎 𝑠𝑠′

• Hard to find two inputs with same output: ℎ𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 = ℎ𝑎𝑎𝑎𝑎𝑎(𝑠𝑠′)

What does “hard to find” mean?

• Major topic, center of computational complexity
• Loosely speaking, we can’t absolutely prove this
• But we can show that if we could solve one problem, we could

solve another problem that is widely believed to be hard
– Because lots of people have tried to solve it and failed!

• This proves that one problem is at least as hard as another
– “Problem reduction”

Handling collisions

• More common than you think!
– Birthday paradox
– Example: 1M buckets and 2,450 keys uniformly distributed
– 95% chance of a collision

• Easiest solution is chaining
– E.g. with linked lists

Now for the fun part…

What cool stuff can we do with hashing?

Rabin-Karp string search

• Find one string (“pattern”) in another
– Naively we repeatedly shift the pattern
– Example: To find “greg” in “richardandgreg” we compare greg against

“rich”, “icha”, “char”, etc. (‘shingles’ at the word level)

• Instead let’s use a hash function ℎ
• We first compare ℎ(“greg”) with ℎ(“rich”), then ℎ(“icha”), etc.
• Only if the hash values are equal do we look at the string

– Because 𝑥𝑥 = 𝑦𝑦 ⇒ ℎ(𝑥𝑥) = ℎ(𝑦𝑦) (but not ⇐ of course!)

Rolling hash functions

• To make this computationally efficient we need a special kind
of hash function ℎ

• As we go through “richardandgreg” looking for “greg” we will
be computing ℎ on consecutive strings of the same length

• There are clever ways to do this, but to get the flavor of them
here is a naïve way that mostly works
– Take the ASCII values of all the characters and multiply them
– Reduce this modulo something reasonable

Large backups

• How do we backup all the world’s information?
• Tape robots!
• VERY SLOW access

Bloom filters

• Suppose you are processing items, most of them are cheap but a
few of them are very expensive.
– Can we quickly figure out if an item is expensive?
– Could store the expensive items in an associative array
– Or use a binary valued hash table?

• Efficient way to find out if an item might be expensive

• We will query set membership but allow false positives
– I.e. the answer to 𝑠𝑠 ∈ 𝑆𝑆 is either ‘possibly’ or ‘definitely not’

• Use a few hash functions ℎ𝑖𝑖 and bit array 𝐴𝐴
– To insert 𝑠𝑠 we set 𝐴𝐴 ℎ𝑖𝑖 (𝑠𝑠) = 1 ∀ 𝑖𝑖

• Example has 3 hash functions and 18 bit array
• {𝑥𝑥,𝑦𝑦, 𝑧𝑧} are in the set, 𝑤𝑤 is not

• Figure by David Eppstein, https://commons.wikimedia.org/w/index.php?curid=2609777

Bloom filter example

• CDN’s, like Akamai, make the web work (~70% of traffic)
• About 75% of URL’s are ‘one hit wonders’

– Never looked at again by anyone
– Let’s not do the work to put these in the disk cache!

• Cache on second hit

• Use a Bloom filter to record URL’s that have been accessed
• A one hit wonder will not be in the Bloom filter
• See: Maggs, Bruce M.; Sitaraman, Ramesh K. (July 2015), "Algorithmic nuggets in content

delivery" (PDF), SIGCOMM Computer Communication Review, New York, NY, USA,45 (3): 52–66

Application: web caching

https://en.wikipedia.org/wiki/Bruce_Maggs
https://en.wikipedia.org/wiki/Ramesh_Sitaraman
https://www.akamai.com/us/en/multimedia/documents/technical-publication/algorithmic-nuggets-in-content-delivery-technical-publication.pdf

Bloom filters really work!

• Figures from: Maggs, Bruce M.; Sitaraman, Ramesh K. (July 2015), "Algorithmic nuggets in content
delivery" (PDF), SIGCOMM Computer Communication Review, New York, NY, USA,45 (3): 52–66

https://en.wikipedia.org/wiki/Bruce_Maggs
https://en.wikipedia.org/wiki/Ramesh_Sitaraman
https://www.akamai.com/us/en/multimedia/documents/technical-publication/algorithmic-nuggets-in-content-delivery-technical-publication.pdf

Cool facts about Bloom filters

• You don’t need to build different hash functions, you can use a
single one and divide its output into fields (usually)

• Can calculate probability of false positives and keep it low
• Time to add an element to the filter, or check if an element is

in the filter, is independent of the size of the element (!)
• You can estimate the size of the union of two sets from the

bitwise OR of their Bloom filters

MinHash

• Suppose you want to figure out how similar two sets are

– Jacard similarity measure is 𝐽𝐽 𝐴𝐴,𝐵𝐵 = 𝐴𝐴∩𝐵𝐵
|𝐴𝐴∪𝐵𝐵|

– This is 0 when disjoint and 1 when identical
• Define ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 to be the element of 𝑆𝑆 with the smallest value

of the hash function ℎ, i.e. ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 = arg min
s∈𝑆𝑆

ℎ(𝑠𝑠)
– This uses hashing to compute a set’s “signature”

• Probability that ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴 = ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵 is 𝐽𝐽(𝐴𝐴,𝐵𝐵)
• Do this with a bunch of different hash functions

MinHash applications

• Plagiarism detection in articles
• Collaborative filtering!

– Amazon, NetFlix, etc.

Distributed hash tables (DHT)

• BitTorrent, etc.
• Given a file name and its data, store/retrieve it in a network
• Compute the hash of the file name
• This maps to a particular processor, which holds the file

	CS5112: Algorithms and Data Structures for Applications
	Administrivia
	Today
	Associative arrays	
	How computer scientists think about efficiency
	Big O notation: main ideas
	Some canonical complexity classes
	Big O notation and its limitations
	Linked lists
	Linked lists as memory arrays
	Example
	Locality and efficiency
	Memory hierarchy in a modern CPU
	Complexity of associative array algorithms
	Hashing in one diagram
	What makes a good hash function?
	Examples of good and bad hash functions
	Cryptographic hashing
	What does “hard to find” mean?
	Handling collisions
	Now for the fun part…
	Rabin-Karp string search
	Rolling hash functions
	Large backups
	Bloom filters
	Bloom filter example
	Application: web caching
	Bloom filters really work!
	Cool facts about Bloom filters
	MinHash
	MinHash applications
	Distributed hash tables (DHT)

