
CS5112: Algorithms and Data Structures for
Applications

Ramin Zabih

Some figures from Wikipedia/Google image search

Lecture 4.1: Applications of hashing

Administrivia

• Web site is: https://github.com/cornelltech/CS5112-F18
– As usual, this is pretty much all you need to know

• HW 1 at Thursday 11:59PM
– Also very high tech!

https://github.com/cornelltech/CS5112-F18

Quiz 1 comments

• Overall people did pretty well
– 6/6: 73 people
– 5/6: 58 people
– 4/5: 22 people

• There was a Dijkstra question that required some thought
– Might be on prelim/final in some form?

• High tech solution seemed to work well
• Reminder: we will drop your lowest quiz

Homework comments

• Getting the course staff is slower than we hoped
• Slack should be your primary contact
• Each student has 1 slip day over the semester
• For a pair, you can use a single day (not 2 days)

– You need to tell us which student to charge it to
– If you don’t, we will ask you, and eventually charge it to both of you

Today

• Fun applications of hashing!
– Lots of billion-dollar ideas

• Greg on cryptocurrency

Collisions are an issue

• See HW 1

Can you determine if there are collisions?

• Given a hashing function ℎ from bit strings to bit strings
– No limits on the length of input or output

• Recall: cryptographic hash functions shouldn’t have collisions
– Two inputs with same output: ℎ 𝑠𝑠 = ℎ(𝑠𝑠′)

• Can we tell this by inspecting ℎ?

Different excuses for failure

Garey & Johnson, Computers and Intractability

Uncomputable vs intractable

• Uncomputable: proven to be this is impossible
– Determine if ℎ has any collisions
– Almost any question about a program
– Some very subtle problems where the input size is unbounded

• Intractable: proven at least as hard as famous open problems
– Technically “NP-hard”
– Almost any question about a graph, such as coloring

• A tractable graph problem is pure gold!
– Many problems in cryptography

Uses in CS of hardness results

• Very important in many applications
• Use case 1: hard problems can help you

– Want to show that if you could break a code you could also solve a
famous open problem (e.g. factoring efficiently)

– Mostly shows up in adversarial situations

• Use case 2: hard problems avoid wasting time
– Showing that a problem is hard will keep people from working on it
– Amusingly enough, sometimes it shows publications are wrong

Back to the fun part…

What cool stuff can we do with hashing?

Bloom filters

• Suppose you are processing items, most of them are cheap but a
few of them are very expensive.
– Can we quickly figure out if an item is expensive?
– Could store the expensive items in an associative array
– Or use a binary valued hash table?

• Efficient way to find out if an item might be expensive

• We will query set membership but allow false positives
– I.e. the answer to 𝑠𝑠 ∈ 𝑆𝑆 is either ‘possibly’ or ‘definitely not’

• Use a few hash functions ℎ𝑖𝑖 and bit array 𝐴𝐴
– To insert 𝑠𝑠 we set 𝐴𝐴 ℎ𝑖𝑖 (𝑠𝑠) = 1 ∀ 𝑖𝑖

• Example has 3 hash functions and 18 bit array
• {𝑥𝑥,𝑦𝑦, 𝑧𝑧} are in the set, 𝑤𝑤 is not
• Bits are (sort of) signature

• Figure by David Eppstein, https://commons.wikimedia.org/w/index.php?curid=2609777

Bloom filter example

• CDN’s, like Akamai, make the web work (~70% of traffic)
• About 75% of URL’s are ‘one hit wonders’

– Never looked at again by anyone
– Let’s not do the work to put these in the disk cache!

• Cache on second hit

• Use a Bloom filter to record URL’s that have been accessed
• A one hit wonder will not be in the Bloom filter
• See: Maggs, Bruce M.; Sitaraman, Ramesh K. (July 2015), "Algorithmic nuggets in content

delivery" (PDF), SIGCOMM Computer Communication Review, New York, NY, USA,45 (3): 52–66

Application: web caching

https://en.wikipedia.org/wiki/Bruce_Maggs
https://en.wikipedia.org/wiki/Ramesh_Sitaraman
https://www.akamai.com/us/en/multimedia/documents/technical-publication/algorithmic-nuggets-in-content-delivery-technical-publication.pdf

Bloom filters really work!

• Figures from: Maggs, Bruce M.; Sitaraman, Ramesh K. (July 2015), "Algorithmic nuggets in content
delivery" (PDF), SIGCOMM Computer Communication Review, New York, NY, USA,45 (3): 52–66

https://en.wikipedia.org/wiki/Bruce_Maggs
https://en.wikipedia.org/wiki/Ramesh_Sitaraman
https://www.akamai.com/us/en/multimedia/documents/technical-publication/algorithmic-nuggets-in-content-delivery-technical-publication.pdf

Cool facts about Bloom filters

• You don’t need to build different hash functions, you can use a
single one and divide its output into fields (usually)

• Can calculate probability of false positives and keep it low
• Time to add an element to the filter, or check if an element is

in the filter, is independent of the size of the element (!)
• You can estimate the size of the union of two sets from the

bitwise OR of their Bloom filters

MinHash

• Suppose you want to figure out how similar two sets are

– Jacard similarity measure is 𝐽𝐽 𝐴𝐴,𝐵𝐵 = 𝐴𝐴∩𝐵𝐵
|𝐴𝐴∪𝐵𝐵|

– This is 0 when disjoint and 1 when identical
• Define ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 to be the element of 𝑆𝑆 with the smallest value

of the hash function ℎ, i.e. ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 = arg min
s∈𝑆𝑆

ℎ(𝑠𝑠)
– This uses hashing to compute a set’s “signature”

• Probability that ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴 = ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵 is 𝐽𝐽(𝐴𝐴,𝐵𝐵)
• Do this with a bunch of different hash functions

MinHash applications

• Plagiarism detection in articles
• Collaborative filtering!

– Amazon, NetFlix, etc.

Distributed hash tables (DHT)

• BitTorrent, etc.
• Given a file name and its data, store/retrieve it in a network
• Compute the hash of the file name
• This maps to a particular processor, which holds the file

	CS5112: Algorithms and Data Structures for Applications
	Administrivia
	Quiz 1 comments
	Homework comments
	Today
	Collisions are an issue
	Can you determine if there are collisions?
	Different excuses for failure
	Uncomputable vs intractable
	Uses in CS of hardness results
	Back to the fun part…
	Bloom filters
	Bloom filter example
	Application: web caching
	Bloom filters really work!
	Cool facts about Bloom filters
	MinHash
	MinHash applications
	Distributed hash tables (DHT)

