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Lecture 4.1: Applications of hashing



Administrivia

• Web site is: https://github.com/cornelltech/CS5112-F18
– As usual, this is pretty much all you need to know

• HW 1 at Thursday 11:59PM
– Also very high tech!

https://github.com/cornelltech/CS5112-F18


Quiz 1 comments

• Overall people did pretty well
– 6/6: 73 people
– 5/6: 58 people
– 4/5: 22 people

• There was a Dijkstra question that required some thought
– Might be on prelim/final in some form?

• High tech solution seemed to work well
• Reminder: we will drop your lowest quiz



Homework comments

• Getting the course staff is slower than we hoped
• Slack should be your primary contact
• Each student has 1 slip day over the semester
• For a pair, you can use a single day (not 2 days)

– You need to tell us which student to charge it to
– If you don’t, we will ask you, and eventually charge it to both of you



Today

• Fun applications of hashing!
– Lots of billion-dollar ideas

• Greg on cryptocurrency



Collisions are an issue

• See HW 1



Can you determine if there are collisions?

• Given a hashing function ℎ from bit strings to bit strings 
– No limits on the length of input or output

• Recall: cryptographic hash functions shouldn’t have collisions
– Two inputs with same output: ℎ 𝑠𝑠 = ℎ(𝑠𝑠′)

• Can we tell this by inspecting ℎ?



Different excuses for failure

Garey & Johnson, Computers and Intractability



Uncomputable vs intractable

• Uncomputable: proven to be this is impossible
– Determine if ℎ has any collisions
– Almost any question about a program
– Some very subtle problems where the input size is unbounded

• Intractable: proven at least as hard as famous open problems
– Technically “NP-hard”
– Almost any question about a graph, such as coloring

• A tractable graph problem is pure gold!
– Many problems in cryptography



Uses in CS of hardness results

• Very important in many applications
• Use case 1: hard problems can help you

– Want to show that if you could break a code you could also solve a 
famous open problem (e.g. factoring efficiently)

– Mostly shows up in adversarial situations

• Use case 2: hard problems avoid wasting time
– Showing that a problem is hard will keep people from working on it
– Amusingly enough, sometimes it shows publications are wrong



Back to the fun part…

What cool stuff can we do with hashing?



Bloom filters

• Suppose you are processing items, most of them are cheap but a 
few of them are very expensive. 
– Can we quickly figure out if an item is expensive?
– Could store the expensive items in an associative array
– Or use a binary valued hash table?

• Efficient way to find out if an item might be expensive

• We will query set membership but allow false positives
– I.e. the answer to 𝑠𝑠 ∈ 𝑆𝑆 is either ‘possibly’ or ‘definitely not’

• Use a few hash functions ℎ𝑖𝑖 and bit array 𝐴𝐴
– To insert 𝑠𝑠 we set 𝐴𝐴 ℎ𝑖𝑖 (𝑠𝑠) = 1 ∀ 𝑖𝑖



• Example has 3 hash functions and 18 bit array
• {𝑥𝑥,𝑦𝑦, 𝑧𝑧} are in the set, 𝑤𝑤 is not
• Bits are (sort of) signature

• Figure by David Eppstein, https://commons.wikimedia.org/w/index.php?curid=2609777

Bloom filter example



• CDN’s, like Akamai, make the web work (~70% of traffic)
• About 75% of URL’s are ‘one hit wonders’

– Never looked at again by anyone
– Let’s not do the work to put these in the disk cache!

• Cache on second hit

• Use a Bloom filter to record URL’s that have been accessed
• A one hit wonder will not be in the Bloom filter
• See: Maggs, Bruce M.; Sitaraman, Ramesh K. (July 2015), "Algorithmic nuggets in content 

delivery" (PDF), SIGCOMM Computer Communication Review, New York, NY, USA,45 (3): 52–66

Application: web caching

https://en.wikipedia.org/wiki/Bruce_Maggs
https://en.wikipedia.org/wiki/Ramesh_Sitaraman
https://www.akamai.com/us/en/multimedia/documents/technical-publication/algorithmic-nuggets-in-content-delivery-technical-publication.pdf


Bloom filters really work!

• Figures from: Maggs, Bruce M.; Sitaraman, Ramesh K. (July 2015), "Algorithmic nuggets in content 
delivery" (PDF), SIGCOMM Computer Communication Review, New York, NY, USA,45 (3): 52–66

https://en.wikipedia.org/wiki/Bruce_Maggs
https://en.wikipedia.org/wiki/Ramesh_Sitaraman
https://www.akamai.com/us/en/multimedia/documents/technical-publication/algorithmic-nuggets-in-content-delivery-technical-publication.pdf


Cool facts about Bloom filters

• You don’t need to build different hash functions, you can use a 
single one and divide its output into fields (usually)

• Can calculate probability of false positives and keep it low
• Time to add an element to the filter, or check if an element is 

in the filter, is independent of the size of the element (!)
• You can estimate the size of the union of two sets from the 

bitwise OR of their Bloom filters



MinHash

• Suppose you want to figure out how similar two sets are

– Jacard similarity measure is 𝐽𝐽 𝐴𝐴,𝐵𝐵 = 𝐴𝐴∩𝐵𝐵
|𝐴𝐴∪𝐵𝐵|

– This is 0 when disjoint and 1 when identical
• Define ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 to be the element of 𝑆𝑆 with the smallest value 

of the hash function ℎ, i.e. ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 = arg min
s∈𝑆𝑆

ℎ(𝑠𝑠)
– This uses hashing to compute a set’s “signature”

• Probability that ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴 = ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵 is 𝐽𝐽(𝐴𝐴,𝐵𝐵)
• Do this with a bunch of different hash functions



MinHash applications

• Plagiarism detection in articles
• Collaborative filtering!

– Amazon, NetFlix, etc.



Distributed hash tables (DHT)

• BitTorrent, etc.
• Given a file name and its data, store/retrieve it in a network
• Compute the hash of the file name
• This maps to a particular processor, which holds the file
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