
CS5112: Algorithms and Data Structures for 
Applications

Ramin Zabih

Some figures from Wikipedia/Google image search

Lecture 7: Some distributed algorithms



Administrivia

• HW comments and minor corrections on Slack

– Please keep an eye on it for announcements

• Q3 out today, coverage through Tuesday’s lecture

• Non-anonymous survey coming re: speed of course, etc.

• Next week:

– Tuesday lecture by Richard Bowen

– Thursday lecture by Prof. Ari Juels

– Thursday evening clinic by Richard Bowen



Office hours

• Prof Zabih: after lecture or by appointment

• Tuesdays 11:30-12:30 in Bloomberg 277 with @Julia

• Wednesdays 2:30-3:30 in Bloomberg 277 with @irisz

• Wednesdays 3:30-4:30 in Bloomberg 277 with @Ishan

• Thursdays 10-12 in Bloomberg 267 with @Fei Li



Today

• Hash lists

• Merkle trees

• A few DHT (BitTorrent) issues

• Consistent hashing

• Perfect hashing



Motivation

• Definition of a distributed system

• Consider a large file like a video 

• Blocks of the file are distributed for many reasons

– Redundancy, cost, etc.

– Different processors have different blocks



How do we insure integrity?

• For a file on a single machine, we can use a checksum
– Function which changes a lot if we change the input a little

– Store the results along with the file

• Famous example: MD5, intended to be a cryptographic hash
– You can find pairs such that 𝑚𝑑5 𝑥 = 𝑚𝑑5(𝑦)

– “Flame” used this to forge a code-signing certificate for Windows
• https://blogs.technet.microsoft.com/srd/2012/06/06/flame-malware-

collision-attack-explained/

• But MD5 is fine as a checksum, and widely used

https://blogs.technet.microsoft.com/srd/2012/06/06/flame-malware-collision-attack-explained/


Hash lists and applications

• When the blocks are distributed we need:
– Integrity of each block

– Robustness to failure of computer holding a given block

• Solution: hash each data block

• Sounds cool, but is it useful?



Widely used application of hash lists



Hash trees/Merkle trees

• Many applications has the block hashes together

– Create a trusted “top hash” by hashing the concatenation



Hash trees/Merkle trees

• Widely used (Bitcoin, Git, etc)

• Tree of hash values

– Usually a binary tree

• Leaf nodes identify data blocks

• The parent of two nodes with hash value 𝑥, 𝑦 has the hash of 
the concatenation of 𝑥 and 𝑦



Example

Given the values 
circled in blue we can 
quickly verify L2



Distributed hash tables (DHT)

• BitTorrent, etc.

• Given a file name and its data, store/retrieve it in a network

• Compute the hash of the file name

• This maps to a particular server, which holds the file

• Sounds good! Until the file you want is on a machine that is 
not responding…

– But is this a real issue? Aren’t computers pretty reliable?



Google datacenter numbers (2008)

• In each cluster's first year, it's typical that:
– 1,000 individual machine failures will occur; 
– thousands of hard drive failures will occur; 
– one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 

hours; 
– 20 racks will fail, each time causing 40 to 80 machines to vanish from the network; 
– 5 racks will "go wonky," with half their network packets missing in action; 
– The cluster will have to be rewired once, affecting 5 percent of the machines at any given 

moment over a 2-day span. 
– About a 50 percent chance that the cluster will overheat, taking down most of the 

servers in less than 5 minutes and taking 1 to 2 days to recover.

• Jeff Dean, “Google spotlights data center inner workings”, CNET May 2008

https://www.cnet.com/news/google-spotlights-data-center-inner-workings/


From filename to processor

• Typically the result of a hash function is a large number

– SHA-1 produces 160 bits (not secure!)

• Map into servers with modular arithmetic

– Reminder: 4 + 7 = 1 (mod 10)

– Mod with powers of 2 is just the low-order bits

– Sneak preview: next lecture will be on bits

• How do we handle a server crashing or rejoining??



Consistent hashing

• Effectively the hash table itself is resized

– Note that this is an important operation in general!

• With naïve hash functions, resizing is a disaster

– Everything needs to be shuffled between buckets/servers

• Key idea is to give add state

– Traditional hash functions are stateless/functional



• Let’s convert the output of our hash function into a circle

– For example, using the low-order 8 bits of SHA-1 

• We map both servers and data onto the circle

– For a server, hash of IP address or something similar

• Data is stored in the “next” server on the circle

– By convention we will move clockwise

Figure from Maggs, Bruce M.; Sitaraman, Ramesh K. (July 2015), "Algorithmic nuggets in content 
delivery" (PDF), SIGCOMM Computer Communication Review, New York, NY, USA,45 (3): 52–66

Hashing into the circle

https://en.wikipedia.org/wiki/Bruce_Maggs
https://en.wikipedia.org/wiki/Ramesh_Sitaraman
https://www.akamai.com/us/en/multimedia/documents/technical-publication/algorithmic-nuggets-in-content-delivery-technical-publication.pdf


Example of consistent hashing

• Data 1,2,3,4 stored on computers A,B
• Servers->data (good quiz/exam question):

A->1,4
B->2
C->3

• If C crashes, we just move 3 to A

Diagram taken from Tom White based on original article

http://www.tom-e-white.com/2007/11/consistent-hashing.html
https://dl.acm.org/citation.cfm?id=313019


Gracefully adding/removing a server

• Add server D after C crashes
– Takes 3,4 from A

• Servers->data:
A->1
B->2
D->3,4

• This is a lot faster!
– Naively, going from 3 to 4 servers moves 75% of data
– With consistent hashing we move 25% of data
– Advantage gets even larger for more servers

Diagram taken from Tom White based on original article

http://www.tom-e-white.com/2007/11/consistent-hashing.html
https://dl.acm.org/citation.cfm?id=313019


Improving consistent hashing

• Need a uniform hash function, lots of them aren’t

• Typically make replicas of servers for load balancing

– About log𝑚 replicas from 𝑚 servers for theoretical reasons

– Can also replicate data items if they are popular

• Typically store a list of nearby nodes for redundancy

• Note that the data still needs to move after a crash

• Store the servers in a BST to efficiently find successor

– This requires global knowledge about the servers



Handling popular objects

• Each object can have its own hash function

• Basically, it’s view of the unit circle

• Ensures that you are very unlikely to have 2 popular objects 
share the same server



Perfect & minimal hashing

• Choice of hash functions is data-dependent!

• Let’s try to hash 4 English words into the buckets 0,1,2,3

– E.g., to efficiently compress a sentence

• Words: {“banana”, “glib”, “epic”, “food”}

– Can efficiently say sentence like “epic glib banana food” = 3,2,1,0

• Can you construct a minimal perfect hash function that maps 
each of these to a different bucket?

– Needs to be efficient, not (e.g.) a list of cases



Perfect hashing example

• For this particular example, it is easy



Recall: bitwise masking

• Bitwise AND operation:

– AND(1,1) = 1

– AND(0,1) = AND(1,0) = AND(0,0) = 0

• Note that AND(x,0) = 0 and AND(x,1) = x

• An AND with a binary number (mask) zeros out the bits where 
the mask is 0

– Lets through the bits where the mask is 1

• So our perfect hash function is: AND with 3 = 0b11


