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Administrivia

• Schedule this week: 
– Today’s lecture by Richard Bowen (me!) 
– Thursday lecture by Prof. Ari Juels 
– Thursday evening clinic by Richard Bowen (also me!)



Today

• Finish up Chord Algorithm and Skip Lists 
• “Bits” 
• Measuring information 
• Compression 
• Huffman Coding



Chord Algorithm

• Reminder of setting: distributed hash table, consistent 
hashing 

• Each node in network gets an id 
• E.g., m-bit hash of its ip address, … 

• We imagine the 2^m numbers from our hash function in a 
circle 

• “successor” of any m-bit number = next node around the 
circle



Consistent hashing: lookup

• Some node wants to lookup a key. Needs to 
find successor(hash(key)). 

• One option: every node stores a full list of 
nodes 
• Expensive updates for adding/removing 

node 
• Another option: every node knows its own 

successor 
• Cheap updates, O(n) lookup.



Strategy comparison

• Every node knows every other node: 
• O(n) nodes updated on every node insertion 
• O(n^2) storage 
• O(1) hops to discover key-value location 

• Every node knows its own successor 
• O(1) nodes updated per node insertion 
• O(n) storage 
• O(n) hops to discover key-value location



Chord algorithm

• An intermediate tradeoff: store a “finger table” 
• Each node n stores the address of 

• for each 0 <= i < m. 

» Figure by Seth Terashima (Tetra7 (talk)) - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=10089321 

successor(n + 2imod2m )

https://commons.wikimedia.org/w/index.php?curid=10089321
https://commons.wikimedia.org/w/index.php?curid=10089321
https://commons.wikimedia.org/w/index.php?curid=10089321
https://commons.wikimedia.org/w/index.php?curid=10089321


Chord: algorithm

• Storage now just O(nm). 
• Lookup is logarithmic: 
• At each step you go about half the 

remaining distance to the correct 
node. 

• Inserting a node touches O(log n) other 
nodes as well (glossing details)



Skip lists

• Can we find an element in a sorted linked list, quickly? 
– Similar to Chord lookup 
– Hierarchy of ‘express lanes’, randomly generated 
– Each node has a small number of “next” pointers instead of 1 

• Figure by Wojciech Muła - Own work, Public Domain, https://
commons.wikimedia.org/w/index.php?curid=4871915 

https://commons.wikimedia.org/w/index.php?curid=4871915
https://commons.wikimedia.org/w/index.php?curid=4871915
https://commons.wikimedia.org/w/index.php?curid=4871915
https://commons.wikimedia.org/w/index.php?curid=4871915


Skip Lists: lookup

• Start in “fastest” lane 
• Walk along until next step would be too big (or off the end) 
• Then drop down to next slowest lane 

• Example: looking up 8



Skip Lists: “fast lane” design

• To get log(n) time lookup, each step should take you about 
halfway to the goal 
• Can achieve this by randomly selecting heights of nodes



Set-of-items data structures

Insert time Lookup time

Linked List (unsorted) O(1) O(n)

Array (sorted) O(n) O(log n)

Skip list O(log n) O(log n)



Bits

• What is a “bit”? 
• Abstractly: a variable with one of two values 
• Physically: a device that can store one of two values 
• As a unit, a measure of information: 
• Length — meters 
• Time — seconds 
• Information — bits



Bits as measure of randomness

• I want to randomly choose from 16 
people, with a fair, 4-sided die. 
What should I do? 
• Just roll it twice; 16 equally-likely 

outcomes.

Image Credit: Clément Bucco-Lechat, https://commons.wikimedia.org/wiki/File:4-sided_die.jpg



Unfair dice

• What about an unfair 4-sided die?  
• Same strategy is unfair: AA has probability 

1/4, not 1/16.

Outcome Prob

A 1/2

B 1/4

C 1/8

D 1/8



Unfair dice

• Strategy: roll several times. Write 
down the code shown on the right. 
Repeat. 

• Once there are at least 4 bits 
written down, stop. 1st 4 bits = 
person to choose. 

• Example: ABC -> 010110 -> person 
5.

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111



Is this fair?

• Every bit is 0 with probability 1/2. 
Why? 

• 2 cases: 
• The bit starts a new code? 0 

only if the roll was A. 
• The bit is in the middle of a 

code? Still true (check!)

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111



How long will this take?

• (Fair die always takes 2 rolls) 
• Unfair die: 
• Never takes 1 roll 
• Takes 2 rolls sometimes: BB, BC, DB,… 
• Takes >=3 rolls otherwise 

• Takes longer! 
• Therefore we say that this gives us fewer 

bits of randomness than a fair die.  
• Have to keep going until you have 4 bits!

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111



Communication

• I roll my fair 4-sided die 10k times and transmit the 
results to you 
• Best I can do is encode with 2 bits per roll 
• Takes 20000 bits every time



Communication

• How about the code for the unfair 
die I used previously? 

• Length of stream is now random, but 
on average it is:

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

10000 i ( 12 ⋅1+14 ⋅2 +18 ⋅3+18 ⋅3)

• On average, only 17500 bits to 
transmit this. 

• We say: “1.75 bits of randomness” 
per roll.



Concrete Example: Compressing/Encoding Text

• English text: 26 letters (+ space). 
• Not very uniform! E, T much more likely 

than Z, X. 
• Looks like an unfair die.

https://en.wikipedia.org/wiki/File:English_letter_frequency_(alphabetic).svg



Concrete Example: English Text

• Naively: could just use 5 bits per 
character. 

• Let’s use a variable-length encoding 
instead 
• Intuition: use shorter codes for more 

common letters to reduce the average 
length



Concrete Example: English Text

• Is this a good code? (the rest of the 
alphabet not shown) 
• Common letters (E, A) get short codes! 

Uncommon get long codes… 

• What is “0111”? AB or EZ?

Letter Code

A “01”

B “11”

E “0"

Z “111”



Prefix-free codes

• Need a code f() so that no two 
letters X,Y have f(X) is a prefix of 
f(Y) 

• Guarantees no ambiguity (why?)

Letter Code

A “01”

B “11”

E “0"

Z “111”



Prefix-free codes

• Back to my unfair die: 
• Is this code prefix-free? 
• Decode this bitstring: 
• 011010111 
• ACBD

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111



Prefix-free codes = binary trees

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

A

B

C D

0 1

1

1

0

0

• 011010111 -> ACBD



Prefix-free codes = binary trees

• A little more on why ancestors = prefixes

0 1

00 01 10 11

000 001 010 011 100 101 110 111



Constructing prefix-free codes

• Let’s compute a prefix-free 
code for these letter 
frequencies 

• We’ll use a Huffman 
Encoding (1952, David 
Huffman)

Letter Prob.

A 5/16

B 3/16

C 3/16

D 3/16

E 2/16



Huffman coding algorithm

1.  Find the lowest-2 probability symbols, X and Y, with probs P(X) and P(Y) 
2.  Combine them into a tree like this: 
3.  Treat this tree as a single symbol with prob P(X)+P(Y) 
4.  Repeat

X

0 1

Y



Huffman coding example

A, 5/16 B, 3/16 C, 3/16 D, 3/16 E, 2/16

A, 5/16 B, 3/16 C, 3/16
D E

,5/16

A, 5/16
D E

,5/16
B C

,6/16

D E
,10/16

B C
,6/16 A

D E
B C A



Huffman coding example

D E
B C A

Letter Prob. Code

A 5/16 “10”

B 3/16 “00”

C 3/16 “01”

D 3/16 “110”

E 2/16 “111"



Huffman coding algorithm

• Intuition: highly-probably things get added later -> shorter codes. 
• The code is “optimal” in some sense 
• On English, gets down to ~4.1 bits per letter 

• Can do much better by considering the 27*27 pairs of letters as symbols 
• Can do even better… stay tuned for when we talk about autoencoders



Bits

• Measuring information in bits in this way is essential to 
how we think about computer science. 
• Encryption schemes whose outputs look random (“1 bit 

per bit”) have strong guarantees (“one-time pad” is 
unbreakable!) 

• Compression algorithms aim to have “1 bit per bit” as 
well — otherwise, you can compress further 

• Used in theory as well, for example, sorting algorithm 
time complexity lower bounds


