
CS5112: Algorithms and Data Structures for
Applications

Richard Bowen

Lecture 8: Bits

Administrivia

• Schedule this week:
– Today’s lecture by Richard Bowen (me!)
– Thursday lecture by Prof. Ari Juels
– Thursday evening clinic by Richard Bowen (also me!)

Today

• Finish up Chord Algorithm and Skip Lists
• “Bits”
• Measuring information
• Compression
• Huffman Coding

Chord Algorithm

• Reminder of setting: distributed hash table, consistent
hashing

• Each node in network gets an id
• E.g., m-bit hash of its ip address, …

• We imagine the 2^m numbers from our hash function in a
circle

• “successor” of any m-bit number = next node around the
circle

Consistent hashing: lookup

• Some node wants to lookup a key. Needs to
find successor(hash(key)).

• One option: every node stores a full list of
nodes
• Expensive updates for adding/removing

node
• Another option: every node knows its own

successor
• Cheap updates, O(n) lookup.

Strategy comparison

• Every node knows every other node:
• O(n) nodes updated on every node insertion
• O(n^2) storage
• O(1) hops to discover key-value location

• Every node knows its own successor
• O(1) nodes updated per node insertion
• O(n) storage
• O(n) hops to discover key-value location

Chord algorithm

• An intermediate tradeoff: store a “finger table”
• Each node n stores the address of

• for each 0 <= i < m.

» Figure by Seth Terashima (Tetra7 (talk)) - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=10089321

successor(n + 2imod2m)

https://commons.wikimedia.org/w/index.php?curid=10089321
https://commons.wikimedia.org/w/index.php?curid=10089321
https://commons.wikimedia.org/w/index.php?curid=10089321
https://commons.wikimedia.org/w/index.php?curid=10089321

Chord: algorithm

• Storage now just O(nm).
• Lookup is logarithmic:
• At each step you go about half the

remaining distance to the correct
node.

• Inserting a node touches O(log n) other
nodes as well (glossing details)

Skip lists

• Can we find an element in a sorted linked list, quickly?
– Similar to Chord lookup
– Hierarchy of ‘express lanes’, randomly generated
– Each node has a small number of “next” pointers instead of 1

• Figure by Wojciech Muła - Own work, Public Domain, https://
commons.wikimedia.org/w/index.php?curid=4871915

https://commons.wikimedia.org/w/index.php?curid=4871915
https://commons.wikimedia.org/w/index.php?curid=4871915
https://commons.wikimedia.org/w/index.php?curid=4871915
https://commons.wikimedia.org/w/index.php?curid=4871915

Skip Lists: lookup

• Start in “fastest” lane
• Walk along until next step would be too big (or off the end)
• Then drop down to next slowest lane

• Example: looking up 8

Skip Lists: “fast lane” design

• To get log(n) time lookup, each step should take you about
halfway to the goal
• Can achieve this by randomly selecting heights of nodes

Set-of-items data structures

Insert time Lookup time

Linked List (unsorted) O(1) O(n)

Array (sorted) O(n) O(log n)

Skip list O(log n) O(log n)

Bits

• What is a “bit”?
• Abstractly: a variable with one of two values
• Physically: a device that can store one of two values
• As a unit, a measure of information:
• Length — meters
• Time — seconds
• Information — bits

Bits as measure of randomness

• I want to randomly choose from 16
people, with a fair, 4-sided die.
What should I do?
• Just roll it twice; 16 equally-likely

outcomes.

Image Credit: Clément Bucco-Lechat, https://commons.wikimedia.org/wiki/File:4-sided_die.jpg

Unfair dice

• What about an unfair 4-sided die?
• Same strategy is unfair: AA has probability

1/4, not 1/16.

Outcome Prob

A 1/2

B 1/4

C 1/8

D 1/8

Unfair dice

• Strategy: roll several times. Write
down the code shown on the right.
Repeat.

• Once there are at least 4 bits
written down, stop. 1st 4 bits =
person to choose.

• Example: ABC -> 010110 -> person
5.

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

Is this fair?

• Every bit is 0 with probability 1/2.
Why?

• 2 cases:
• The bit starts a new code? 0

only if the roll was A.
• The bit is in the middle of a

code? Still true (check!)

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

How long will this take?

• (Fair die always takes 2 rolls)
• Unfair die:
• Never takes 1 roll
• Takes 2 rolls sometimes: BB, BC, DB,…
• Takes >=3 rolls otherwise

• Takes longer!
• Therefore we say that this gives us fewer

bits of randomness than a fair die.
• Have to keep going until you have 4 bits!

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

Communication

• I roll my fair 4-sided die 10k times and transmit the
results to you
• Best I can do is encode with 2 bits per roll
• Takes 20000 bits every time

Communication

• How about the code for the unfair
die I used previously?

• Length of stream is now random, but
on average it is:

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

10000 i (12 ⋅1+14 ⋅2 +18 ⋅3+18 ⋅3)

• On average, only 17500 bits to
transmit this.

• We say: “1.75 bits of randomness”
per roll.

Concrete Example: Compressing/Encoding Text

• English text: 26 letters (+ space).
• Not very uniform! E, T much more likely

than Z, X.
• Looks like an unfair die.

https://en.wikipedia.org/wiki/File:English_letter_frequency_(alphabetic).svg

Concrete Example: English Text

• Naively: could just use 5 bits per
character.

• Let’s use a variable-length encoding
instead
• Intuition: use shorter codes for more

common letters to reduce the average
length

Concrete Example: English Text

• Is this a good code? (the rest of the
alphabet not shown)
• Common letters (E, A) get short codes!

Uncommon get long codes…

• What is “0111”? AB or EZ?

Letter Code

A “01”

B “11”

E “0"

Z “111”

Prefix-free codes

• Need a code f() so that no two
letters X,Y have f(X) is a prefix of
f(Y)

• Guarantees no ambiguity (why?)

Letter Code

A “01”

B “11”

E “0"

Z “111”

Prefix-free codes

• Back to my unfair die:
• Is this code prefix-free?
• Decode this bitstring:
• 011010111
• ACBD

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

Prefix-free codes = binary trees

Prob. Code

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

A

B

C D

0 1

1

1

0

0

• 011010111 -> ACBD

Prefix-free codes = binary trees

• A little more on why ancestors = prefixes

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Constructing prefix-free codes

• Let’s compute a prefix-free
code for these letter
frequencies

• We’ll use a Huffman
Encoding (1952, David
Huffman)

Letter Prob.

A 5/16

B 3/16

C 3/16

D 3/16

E 2/16

Huffman coding algorithm

1. Find the lowest-2 probability symbols, X and Y, with probs P(X) and P(Y)
2. Combine them into a tree like this:
3. Treat this tree as a single symbol with prob P(X)+P(Y)
4. Repeat

X

0 1

Y

Huffman coding example

A, 5/16 B, 3/16 C, 3/16 D, 3/16 E, 2/16

A, 5/16 B, 3/16 C, 3/16
D E

,5/16

A, 5/16
D E

,5/16
B C

,6/16

D E
,10/16

B C
,6/16 A

D E
B C A

Huffman coding example

D E
B C A

Letter Prob. Code

A 5/16 “10”

B 3/16 “00”

C 3/16 “01”

D 3/16 “110”

E 2/16 “111"

Huffman coding algorithm

• Intuition: highly-probably things get added later -> shorter codes.
• The code is “optimal” in some sense
• On English, gets down to ~4.1 bits per letter

• Can do much better by considering the 27*27 pairs of letters as symbols
• Can do even better… stay tuned for when we talk about autoencoders

Bits

• Measuring information in bits in this way is essential to
how we think about computer science.
• Encryption schemes whose outputs look random (“1 bit

per bit”) have strong guarantees (“one-time pad” is
unbreakable!)

• Compression algorithms aim to have “1 bit per bit” as
well — otherwise, you can compress further

• Used in theory as well, for example, sorting algorithm
time complexity lower bounds

