
Exact Nearest Neighbor Algorithms





Sabermetrics
● One of the best players ever

○ .310 batting average
○ 3,465 hits
○ 260 home runs
○ 1,311 RBIs
○ 14x All-star
○ 5x World Series winner

● Who is the next Derek Jeter?

Derek Jeter
Source: Wikipedia



Sabermetrics
● Classic example of nearest neighbor application

● Hits, Home runs, RBIs, etc. are dimensions in “Baseball-space”
○ Every individual player has a unique point in this space

● Problem reduces to finding closest point in this space



POI Suggestions
● Simpler example, only 2d space

● Known set of interest points in a map - we want to suggest the closest
○ Note: we could make this more complicated; we could add dimensions for ratings, category, 

newness, etc.

● How do we figure out what to suggest?
○ Brute force: just compute distance to all known points and pick lowest

■ O(n) in the number of points

■ Feels wasteful… why look at the distance to the Eiffel Tower when we know you’re in 

NYC?

○ Space partitioning
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2d trees - Nearest Neighbor
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2d trees - Nearest Neighbor
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2d trees
● Construction complexity: O(n log n)

○ Complication: how do you decide how to partition?

○ Requires you be smart about picking pivots

● Adding/Removing element: O(log n)
○ This is because we know it’s balanced from the median selection

○ ...except adding/removing might make it unbalanced -- there are variants that handle this

● Nearest Neighbor
○ Average case: O(log n)

○ Worst case: O(n)

■ Not great… but not worse than brute force

● Can also be used effectively for range finding



k-d trees
● 2d trees can be extended to k dimensions

Image Source: Wikipedia



k-d trees
● Same algorithm for nearest neighbor!

○ Remember sabermetrics!

○ ...except there’s a catch

● Curse of Dimensionality
○ The higher the dimensions, the “sparser” the data gets in the space

○ Harder to rule out portions of the tree, so many searches end up being fancy brute forces

○ In general, k-d trees are useful when N >> 2k



Sabermetrics (reprise)
● Finding single neighbor could be noise-prone

○ Are we sure this year’s “Derek Jeter” will be next year’s too?

○ What if there are lots of close points… are we sure that the relative distance matters?

○ Could ask for set of most likely players

● Alternate question: will a player make it to the Hall of Fame?
○ Still k-dimensional space, but we’re not comparing with individual point

○ Am I in the “neighborhood” of Hall of Famers?

○ Classic example of “classification problem”



k-Nearest Neighbors (kNN)
● New plan: find the k closest points

○ Each can “vote” for a classification

○ …or you can do some other kind of averaging

● Can we modify our k-d tree NN algorithm to do this?
○ Track k closest points in max-heap (priority queue)

■ Keep heap at size k

○ Only need to consider k’th closest point for tree pruning



Voronoi Diagrams
● Useful visualization of nearest neighbors

○ Good when you have a known set of
comparison points

● Wide ranging applications
○ Epidemiology

■ Cholera victims all near one water pump
○ Aviation

■ Nearest airport for flight diversion
○ Networking

■ Capacity derivation
○ Robotics

■ Points are obstacles, edges are safest
paths

Image Source: Wikipedia



Voronoi Diagrams
● Also helpful for visualizing effects of different distance metrics

Image Source: Wikipedia

Euclidean distance Manhattan distance



Voronoi Diagrams
● Polygon construction algorithm is a little tricky, but conceptually you can think 

of expanding balls around the points

Image Source: Wikipedia



k-means Clustering
● Goal: Group n data points into k groups based on nearest neighbor

Algorithm:

1. Pick k data points at random to be starting “centers,” call each center ci
2. For each node n, calculate which of the k centers is the nearest neighbor and 

add it to set Si
3. Compute the mean of all points in Si to generate a new ci
4. Go back to (2) and repeat with the new centers, until the centers converge



k-means clustering

Image Source: Wikipedia

Notice: the 
algorithm basically 
creates Voronoi 
diagrams for the 
centers!



k-means clustering
● Does this always converge?

○ Depends on distance function. Generally yes for Euclidean
○ Converges quickly in practice, but worst case can take an exponential number of iterations

● Does it give the optimal clustering?
○ NO! Well, at least not always.

Image Source: Wikipedia



Other space partitioning data structures
● Leaf point k-d trees

○ Only stores points in leaves, but leaves can store more than one point
○ Split space at the middle of longest axis
○ Effectively “buckets” points - can be used for approximate nearest neighbor

● Quadtrees
○ Split space into quadrants (i.e. every tree node has four children)
○ Quadrant can only contain at most q nodes

■ If there are more than q, split that quadrant again into quadrants
○ Applications

■ Collision detection (video games)
■ Image representation/processing (transforming/comparing/etc. nearby pixels)
■ Sparse data storage (spreadsheets)

○ Octrees are extension to 3d


