Dynamic Programming

Administrivia

- HW3 is out, and due Oct. 23
 - You can work in groups of 3 now if you choose
- Prelim review next Tuesday (Oct. 23)
 - Come with questions!
- Prelim in-class next Thursday (Oct. 25)

Dynamic Programming

- Useful technique to solve problems that have an "optimal substructure."
 - o i.e. an optimal solution to a problem can be built from optimal solutions to subproblems
 - Ex. fib(n-1) and fib(n-2) can be used to calculate fib(n)
- Dynamic Programming also requires "overlapping subproblems."
 - o i.e. there is shared work in the recursive calls
 - \circ Ex. fib(n) = fib(n-1) + fib(n-2) <- notice that fib(n-1) can be expanded to also need fib(n-2)
 - Note: if subproblems don't overlap, you may still be able to develop a "Divide and Conquer" algorithm

- Define a subsequence of a string s to be a string s' where all characters of s'
 appear in s and are in the same order in both s and s'.
 - Example: MTA, H, ATTN, HAT are all subsequences of MANHATTAN, but TAM is not
- Problem statement: given two strings *s* and *t*, find the longest subsequence common to both strings.
 - Example: if our strings are ITHACA and MANHATTAN, the LCS would be HAA.
- Brute force: enumerate all subsequences of s and check if each is a subsequence of t.
 - Runtime complexity: O(2ⁿ)

- Does this problem have an optimal substructure?
- Observation #1:
 - Consider the case where s and t end in the same letter. Example: MANHATTAN and MADMEN
 - Secretly: by inspection we can see the *LCS*(MANHATTAN, MADMEN) = MAN
 - Since we know they both end in N, let's guess that LCS(MANHATTAN, MADMEN) ends in N
 - Consider LCS(MANHATTA, MADME) by inspection this equals MA
 - Therefore *LCS(*MANHATTA, MADME) + N = MAN = *LCS(*MANHATTAN, MADMEN)
 - More generally,

If
$$s_n = t_m$$
,
 $LCS(s_1...s_n, t_1...t_m) = LCS(s_1...s_{n-1}, t_1...t_{m-1}) + t_m$

Observation #2:

- Consider the case where s and t do NOT end in the same letter. Example: MANHATTAN and ITHACA
- Case 1: LCS(MANHATTAN, ITHACA) does NOT end in N
 - If so, we don't need it, so LCS(MANHATTAN, ITHACA) = LCS(MANHATTA, ITHACA)
- Case 2: LCS(MANHATTAN, ITHACA) ends in N
 - If so, we don't need the A at the end of ITHACA, so *LCS*(MANHATTAN, ITHACA) = *LCS*(MANHATTAN, ITHAC)
- But... we don't know which case is true a priori
- So, generally:

If
$$s_n \neq t_m$$
,
$$LCS(s_1...s_n, t_1...t_m) = max(LCS(s_1...s_{n-1}, t_1...t_m) + LCS(s_1...s_n, t_1...t_{m-1}))$$

- Observation #3:
 - If at least one of s or t is the empty string, then LCS(s, t) is also the empty string

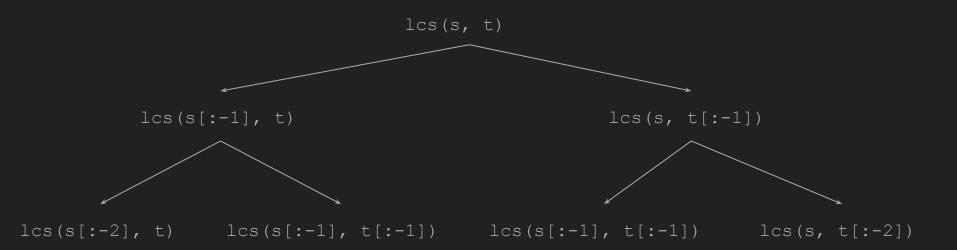
$$LCS(s_{1}...s_{n}, t_{1}...t_{m}) = \begin{cases} u & \text{if } n = 0 \text{ or } m = 0 \\ LCS(s_{1}...s_{n-1}, t_{1}...t_{m-1}) + t_{m} & \text{if } s_{n} = t_{m} \\ max(LCS(s_{1}...s_{n-1}, t_{1}...t_{m}), LCS(s_{1}...s_{n}, t_{1}...t_{m-1})) & \text{otherwise} \end{cases}$$

Does this problem have an optimal substructure? Yes!

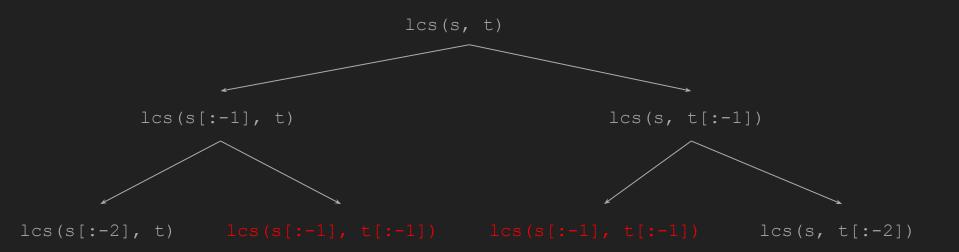
LCS: Naive Implementation

```
def lcs(s, t):
   if len(s) == 0 or len(t) == 0:
      return ""
   if s[-1] == t[-1]:
      return lcs(s[:-1], t[:-1]) + t[-1]
   tmp1 = lcs(s[:-1], t)
   tmp2 = lcs(s, t[:-1])
   return tmp1 if len(tmp1) > len(tmp2) else tmp2
```

LCS: Naive Implementation



LCS: Naive Implementation



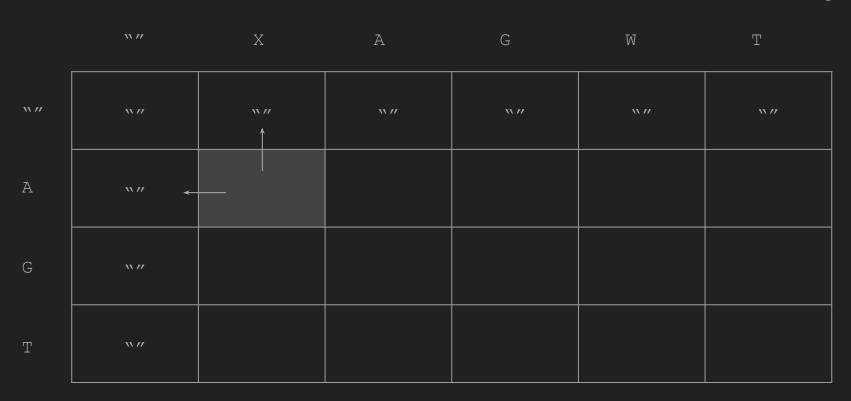
Runtime complexity: $O(2^n)$

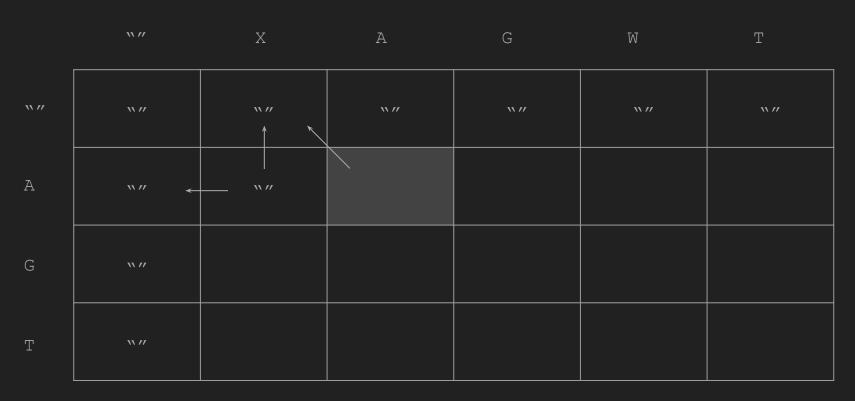
LCS: Recursive Implementation with Memoization

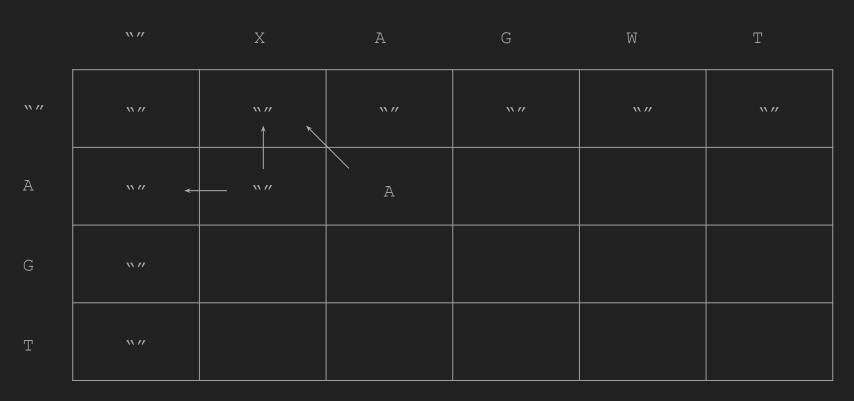
```
mem = \{ \}
def lcs(s, t):
   if (s, t) in mem:
       return mem[(s, t)]
   if len(s) == 0 or len(t) == 0:
       return ""
   if s[-1] == t[-1]:
      mem[(s, t)] = lcs(s[:-1], t[:-1]) + t[-1]
   else:
       tmp1 = lcs(s[:-1], t)
       tmp2 = lcs(s, t[:-1])
       mem[(s, t)] = tmp1 if len(tmp1) > len(tmp2) else tmp2
   return mem[(s, t)]
```

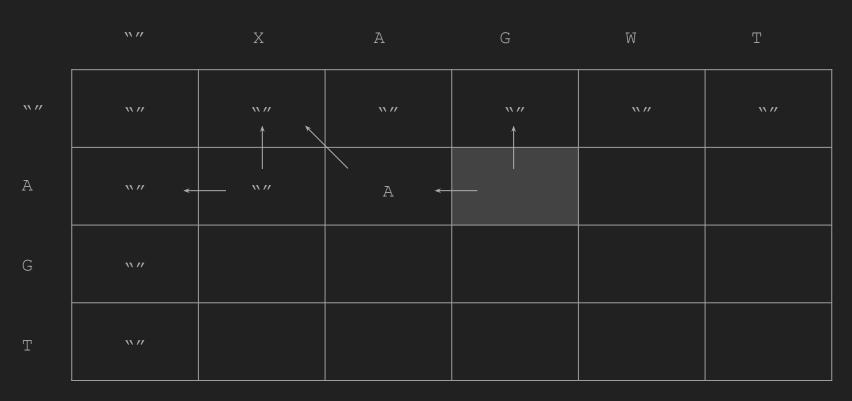
	W//	X	А	G	W	Т
W //						
A						
G						
Т						

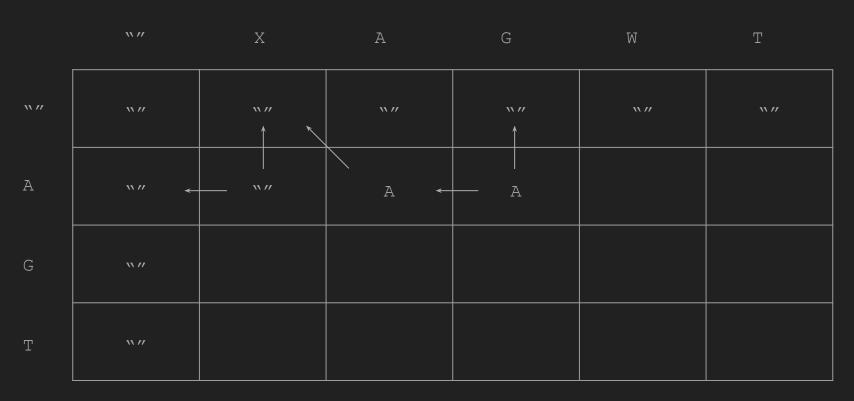
	\\ //	X	А	G	W	Т
W //	\\ //	W.//	\\ //	N//	W.//	W.//
A	\\ //					
G	\\ //					
Т	W.//					

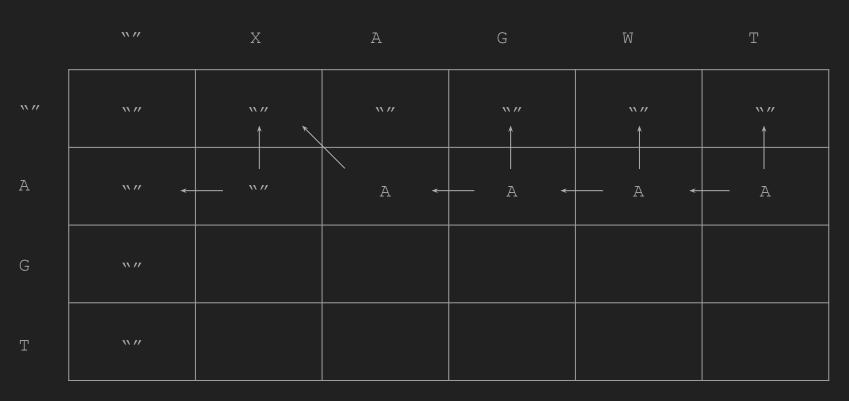


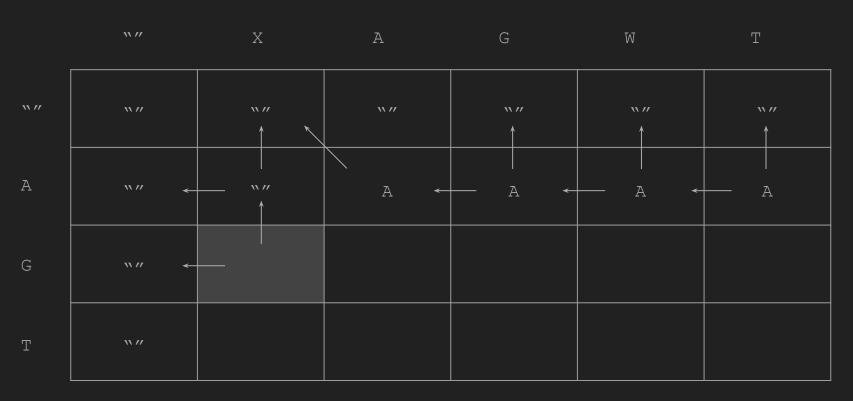


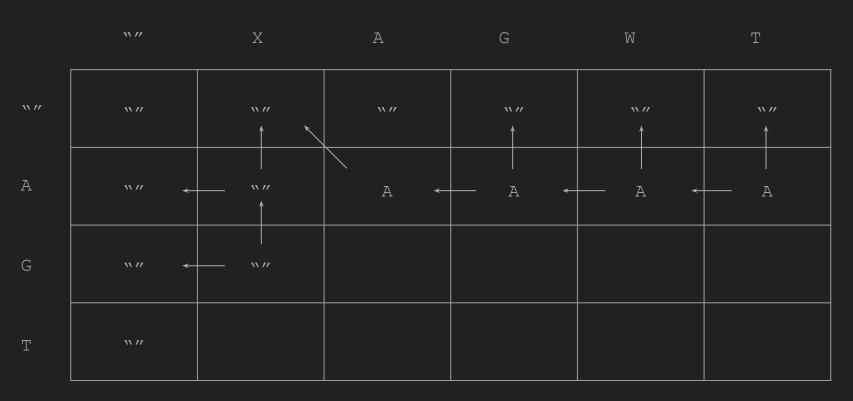


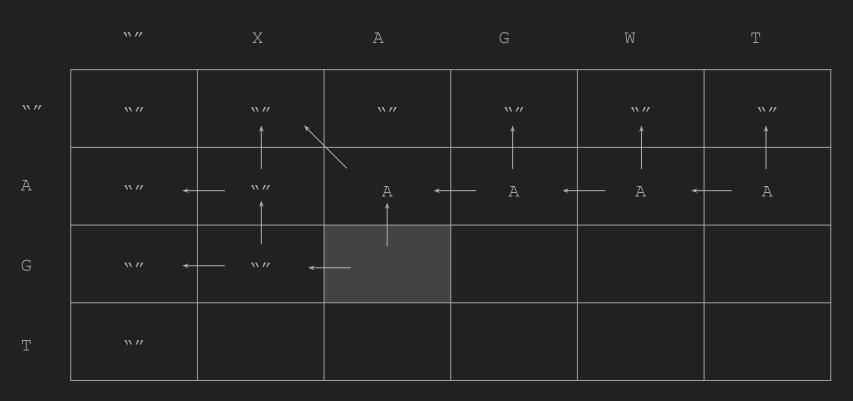


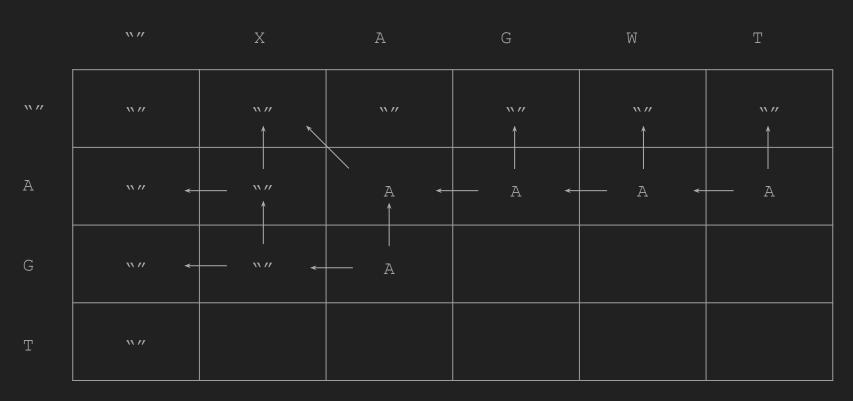


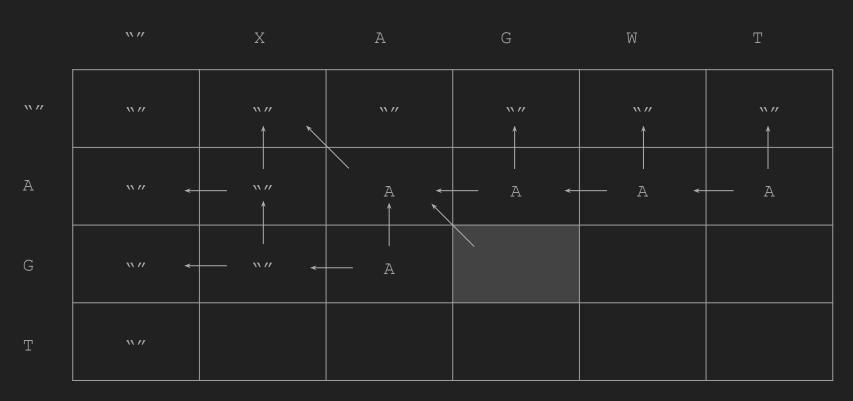


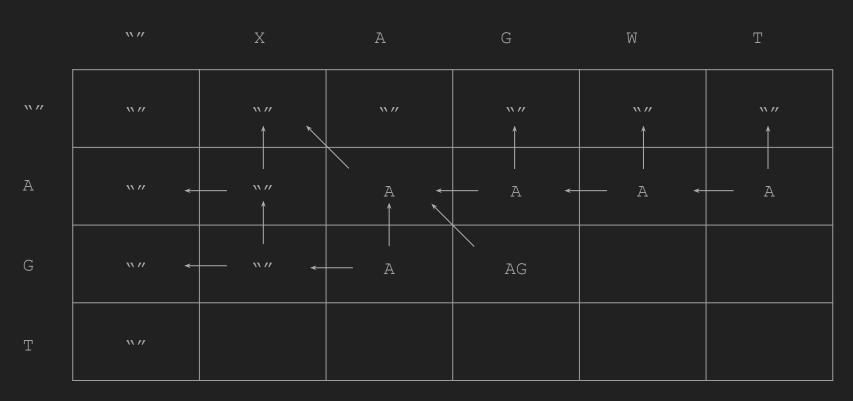


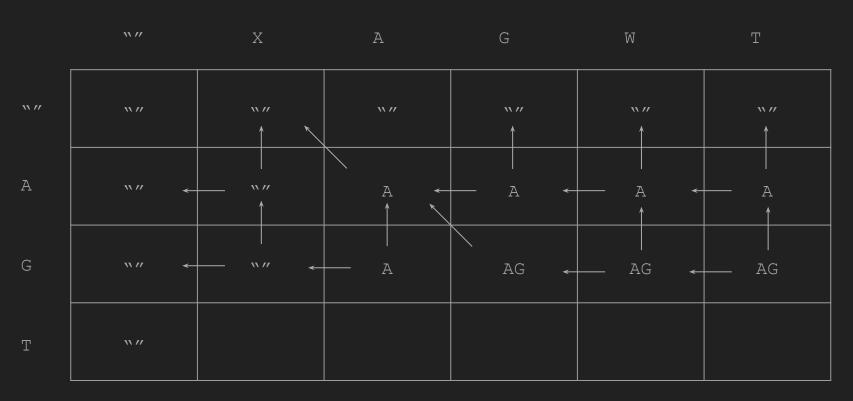


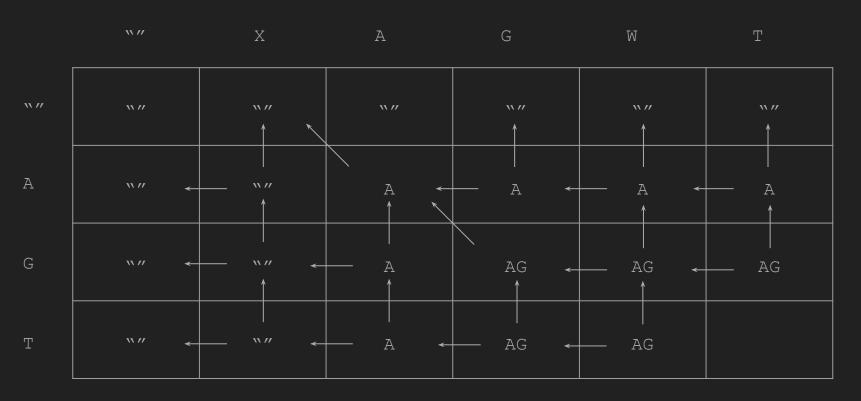


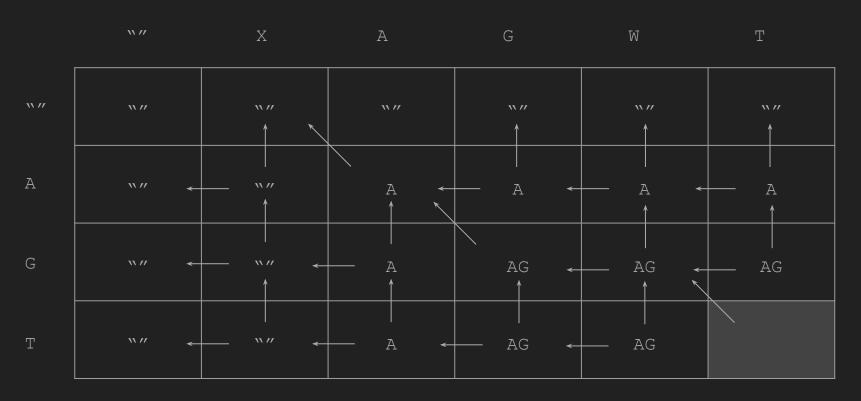


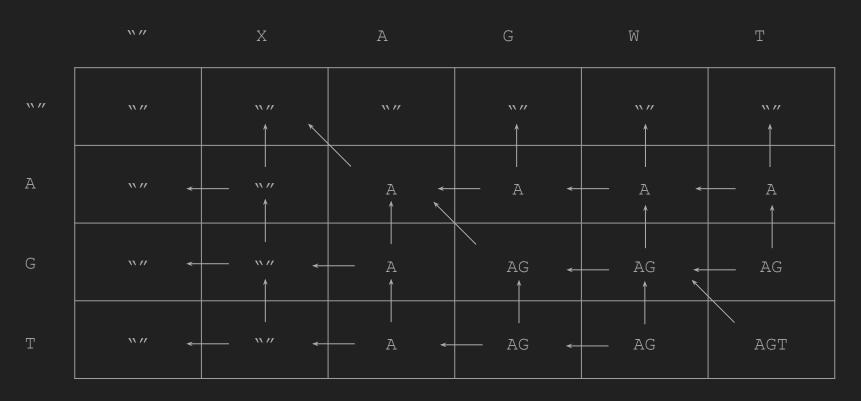


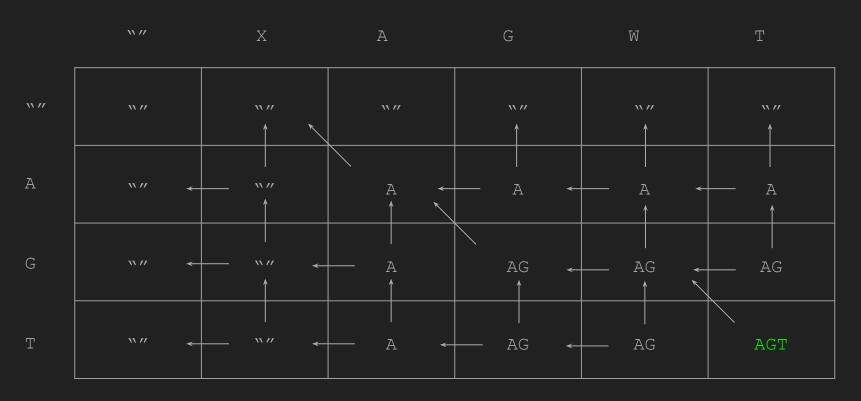






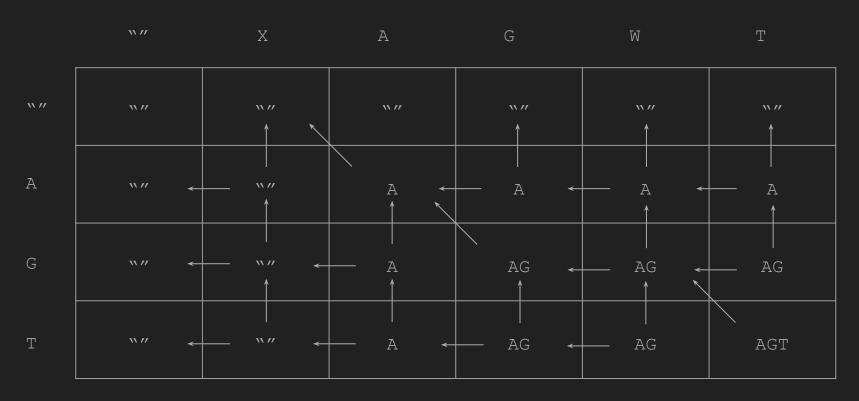


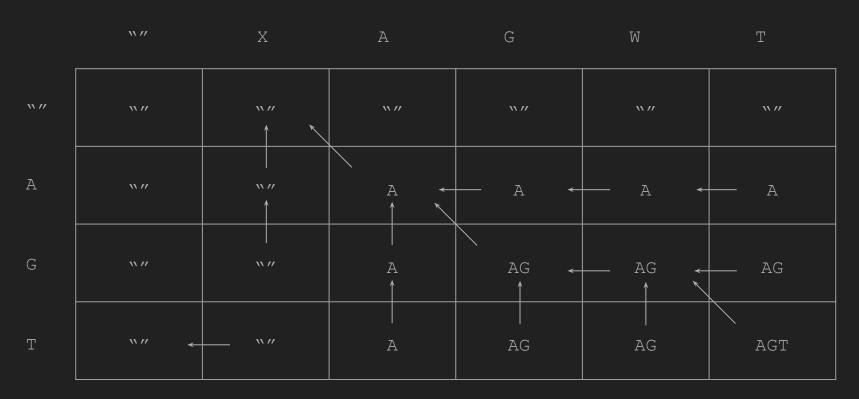


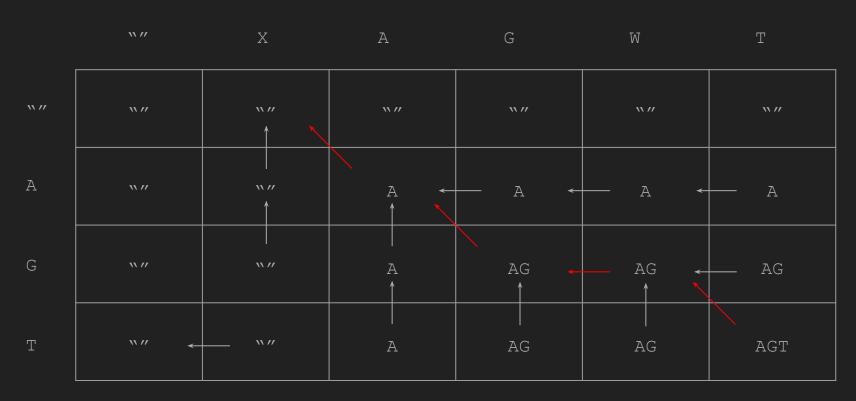


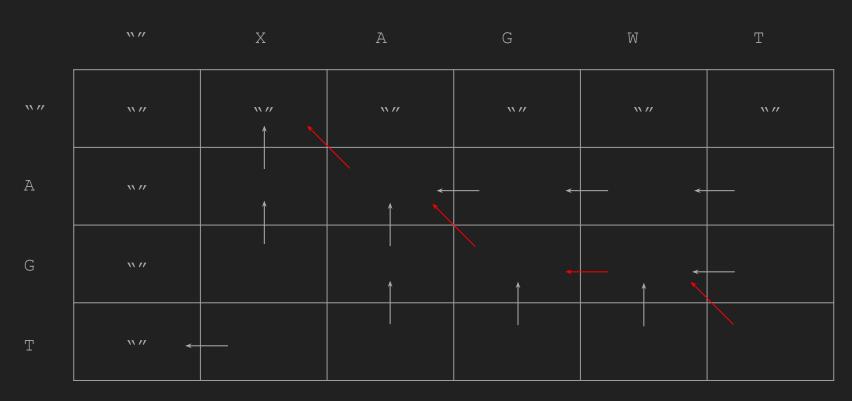
```
def lcs(s, t):
   matrix = [["" for x in range(len(t)+1)] for y in range(len(s)+1)]
    for i in range (1, len(s)+1):
        for j in range (1, len(t)+1):
            if s[i-1] == t[i-1]:
                matrix[i][j] = matrix[i-1][j-1] + t[j-1]
            else:
                tmp1 = matrix[i-1][j]
                tmp2 = matrix[i][j-1]
                matrix[i][j] = tmp1 if len(tmp1) > len(tmp2) else tmp2
    return matrix[len(s)][len(t)]
```

- Iterative "table-filling" runtime complexity
 - Filling in an n * m grid, so O(nm)
 - Space is worse, because we're storing the whole string
 - Can improve by only storing the path to the previous call, and reconstruct answer later









- Iterative "table-filling" runtime complexity
 - Filling in an n * m grid, so O(nm)
 - Space is worse, because we're storing the whole string
 - Can improve by only storing the path to the previous call, and reconstruct answer later
- Recursive memoization runtime complexity
 - Essentially memoizing values for the cells visited
 - O(nm) still a reasonable upper bound
 - Space can be improved in a similar way
- Practical applications
 - o diff
 - version control systems
 - bioinformatics
 - computational linguistics

LCS application: diff

Sequence 1: A B D F H Y Z

Sequence 2: A B C F H W X Y Z

LCS application: diff

Sequence 1: ABDFHYZ

Sequence 2: ABCFHWXYZ

LCS: ABFHYZ

diff: D C W X

DP Example:

DP Example: Dijkstra's Algorithm

- Yes, really!
- Recall: if the shortest path from s to t goes through k, than the subpath from s to k is also the shortest path from s to k
 - This is our optimal substructure!
- Dijkstra's is sort of a "table-filling" algorithm
 - Table dimensions are source cells and sink cells
 - Priority queue tells you which order to fill in cells
 - Your "visited set" is the memoized solutions to subproblems

DP Example: Floyd-Warshall algorithm

- Solution to shortest path problem, like Dijkstra's algorithm
 - Supports negative edges! But still not negative cycles...
 - o Dynamic Programming connection is more explicit
- Given: a graph g with vertices labeled {1, ..., n}.
- Consider shortestPath(i, j, k)
 - Computes the shortest path from *i* to *j* only using nodes in {1, ..., *k*} as intermediate nodes
 - Could be one of two cases:
 - The path does not contain k (so the path only contains nodes in $\{1, ..., k-1\}$)
 - The path does contain k, therefore the path is made up of a path from i to k plus a path from k to j, each of which only contains nodes in $\{1, ..., k-1\}$
- If w(i, j) is the weight of the edge from i to j, then:
 - shortestPath(i, j, 0) = w(i, j)
 - o shortestPath(i, j, k) = min(shortestPath(i, j, k-1), shortestPath(i, k, k-1) + shortestPath(k, j, k-1))