Dynamic Programming

Administrivia

e HWS3is out, and due Oct. 23

o You can work in groups of 3 now if you choose
e Prelim review next Tuesday (Oct. 23)

o Come with questions!

e Prelim in-class next Thursday (Oct. 25)

Dynamic Programming

e Useful technique to solve problems that have an “optimal substructure.”
o i.e. an optimal solution to a problem can be built from optimal solutions to subproblems
o Ex. fib(n-1) and fib(n-2) can be used to calculate fib(n)
e Dynamic Programming also requires “overlapping subproblems.”
o i.e.there is shared work in the recursive calls
o Ex.fib(n) =fib(n-1) + fib(n-2) <- notice that fib(n-1) can be expanded to also need fib(n-2)
o Note: if subproblems don’t overlap, you may still be able to develop a “Divide and Conquer”

algorithm
def fib(n) : mem = {0:0, 1:1}
if n == 0 or n == 1: def fib(n):
return n if n not in mem:
return fib(n-1) + fib (n-2) mem[n] = fib(n-1) + fib(n-2)

return mem[n]

DP Example: Longest Common Subsequence

e Define a subsequence of a string s to be a string s’ where all characters of s’
appear in s and are in the same order in both s and s’
o Example: MTA, H, ATTN, HAT are all subsequences of MANHATTAN, but TAM is not
e Problem statement: given two strings s and ¢, find the longest subsequence
common to both strings.
o Example: if our strings are ITHACA and MANHATTAN, the LCS would be HAA
e Brute force: enumerate all subsequences of s and check if each is a

subsequence of t.

o Runtime complexity: O(2")

DP Example: Longest Common Subsequence

e Does this problem have an optimal substructure?

e (Observation #1:

o Consider the case where s and f end in the same letter. Example: MANHATTAN and
MADMEN

m Secretly: by inspection we can see the LCS(MANHATTAN, MADMEN) = MAN
Since we know they both end in N, let’'s guess that LCS(MANHATTAN, MADMEN) ends in N
Consider LCS(MANHATTA, MADME) - by inspection this equals MA
Therefore LCS(MANHATTA, MADME) + N = MAN = LCS(MANHATTAN, MADMEN)
More generally,

O O O O

Ifs =t ,
n m
LCS(s,...s,t..t)=LCS(s..s ,t..t)+t

DP Example: Longest Common Subsequence

e (Observation #2:

(@)

(@)

(@)

Consider the case where s and t do NOT end in the same letter. Example: MANHATTAN and
ITHACA
Case 1: LCS(MANHATTAN, ITHACA) does NOT end in N

m If so, we don’t need it, so LCS(MANHATTAN, ITHACA) = LCS(MANHATTA, ITHACA)
Case 2: LCS(MANHATTAN, ITHACA) ends in N

m If so, we don’t need the A at the end of ITHACA, so LCS(MANHATTAN, ITHACA) =

LCS(MANHATTAN, ITHAC)

But... we don’t know which case is true a priori
So, generally:

Ifs #t ,
LCS(s,...s , t....t) =max(LCS(s,...s , t..t)+LCS(s..s t..t)

DP Example: Longest Common Subsequence

e (bservation #3:
o If at least one of s or tis the empty string, then LCS(s, {) is also the empty string

DP Example: Longest Common Subsequence

@ ifn=0orm=0

LCS(s,...s _,t..t_)+t ifs,=t,

LCS(s,...s , t,..t) =—<

max(LCS(s,...s_, t...t), LCS(s,...s , t..t_)) otherwise

S —

Does this problem have an optimal substructure? Yes!

LCS: Naive Implementation

def lcs (s, t):

1f len(s) == 0 or len(t) ==
return “”
if s[-1] == [-17

return lcs(s[:-1], t[:-1]) + t[-1]
tmpl = lcs(s[:-1], t)
tmp2 = lcs(s, t[:-1])

return tmpl 1f len(tmpl) > len(tmp2) else tmp2

LCS: Naive Implementation

lcs (s, t)

LCS: Naive Implementation

lcs (s, t)

Runtime complexity: O(2")

LCS: Recursive Implementation with Memoization

mem = {}
def lcs (s, t):
if (s, t) in mem:
return mem| (s, t)]

1f len(s) == 0 or len(t) ==

return %~
if s[-1] == [-1]:

mem|[(s, t)] = lcs(s[:-1], t[:-1]) + t[-1]
else:

tmpl = lcs(s[:-1], t)

tmp2 = lcs (s, tl[:-1])

mem[(s, t)] = tmpl 1if len(tmpl) > len(tmp2) else tmpZ2
return mem|[(s, t)]

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X A € W T

LCS: Alternative implementation with “table-filling”

X

LCS: Alternative implementation with “table-filling”

A

X

LCS: Alternative implementation with “table-filling”

A

X

LCS: Alternative implementation with “table-filling”

A

X

LCS: Alternative implementation with “table-filling”

A

>

X

LCS: Alternative implementation with “table-filling”

A

>

X

A

LCS: Alternative implementation with “table-filling”

>

AG

X

A

G

W

LCS: Alternative implementation with “table-filling”

T

>

LCS: Alternative implementation with “table-filling”

X A € W T
N ! I
| |
A -l A I E— A S Em A - A
! !
| |
G -t \\ 77 - A AG -l AG - AG
T T | !
| | | |
T -l W74 P A SO AG - AG

LCS: Alternative implementation with “table-filling”

X A € W T
N ! I
| |
A -l A I E— A S Em A - A
! !
| |
G -t \\ 77 - A AG -l AG - AG
T T | N
| | | |
T -l W74 P A SO AG - AG

LCS: Alternative implementation with “table-filling”

X A € W T
N ! I
| |
A -l A I E— A S Em A - A
! !
| |
G -t \\ 77 - A AG -l AG - AG
T T | N
| | | |
T -l W74 -l A SO AG - AG AGT

LCS: Alternative implementation with “table-filling”

X A € W T
N ! I
| |
A -l A I E— A S Em A - A
! !
| |
G -t \\ 77 - A AG -l AG - AG
T T | N
| | | |
T -l W74 -l A SO AG - AG AGT

LCS: Iterative Implementation with “table filling”

def lcs (s, t):
matrix = [[V for x in range(len(t)+1l)] for y in range(len(s)+1)]
for 1 in range(l, len(s)+1):
for jJ in range(l, len(t)+1):
if s[i-1] == t[jJ-1]:
matrix([i][]J] = matrix[i-1][3-1] + t[jJ-1]
else:
tmpl = matrix[1i-1][7]]
tmp2 = matrix[1][J-1]
matrix[i][]J] = tmpl if len(tmpl) > len (tmp2) else tmp2

return matrix[len(s)] [len (t)]

DP Example: Longest common subsequence

e |[terative “table-filling” runtime complexity
o Fillingin an n * m grid, so O(nm)
o Space is worse, because we're storing the whole string
m Can improve by only storing the path to the previous call, and reconstruct answer later

LCS:

Space saving with “table-filling”

X A . : T
N T T
| |
B Y = A o o
| !
| |
-1 A\ W44 P A AG AG . AG
| | T t N\
| | | |
T T ° AC e AGT

LCS: Space saving with “table-filling”

X A G W T
"\
A A A A <] A
I
|
€ A AG AG - AG
| ! TN
| | |
T ~— A AG AG AGT

LCS: Space saving with “table-filling”

X A G W T
A A A A A
I
|
€ A AG AG AG
| | I
| | |
T — A AG AG AGT

LCS: Space saving with “table-filling”

X A € W

DP Example: Longest common subsequence

e |[terative “table-filling” runtime complexity

o Fillingin an n * m grid, so O(nm)

o Space is worse, because we're storing the whole string

m Can improve by only storing the path to the previous call, and reconstruct answer later

e Recursive memoization runtime complexity

o Essentially memoizing values for the cells visited

o O(nm) still a reasonable upper bound

o Space can be improved in a similar way
e Practical applications

o diff

o version control systems

o bioinformatics

o computational linguistics

LCS application: diff

Sequence 1. ABDFHYZ
Sequence 2. ABCFHWXYZ

LCS application: diff

Sequence 1: D
Sequence 2: C W X

LCS: ABFHYZ

difi DCW X
-+ + +

DP Example:

DP Example: Dijkstra’s Algorithm

e Yes, really!

e Recall: if the shortest path from s to t goes through k, than the subpath from s
to k is also the shortest path from s to k
o This is our optimal substructure!
e Dijkstra’s is sort of a “table-filling” algorithm
o Table dimensions are source cells and sink cells

o Priority queue tells you which order to fill in cells
o Your “visited set” is the memoized solutions to subproblems

DP Example: Floyd-Warshall algorithm

e Solution to shortest path problem, like Dijkstra’s algorithm
o Supports negative edges! But still not negative cycles...
o Dynamic Programming connection is more explicit

e Given: a graph g with vertices labeled {7, ..., n}.
e Consider shortestPath(i, j, k)

o Computes the shortest path from j to j only using nodes in {1, ..., k} as intermediate nodes
o Could be one of two cases:
m The path does not contain k (so the path only contains nodes in {1, ..., k-1})
m The path does contain k, therefore the path is made up of a path from i to k plus a path
from k to j, each of which only contains nodes in {1, ..., k-1}

o If w(i, j) is the weight of the edge from i to j, then:
o shortestPath(i, j, 0) = w(i, j)
o shortestPath(i, j, k) = min(shortestPath(i, j, k-1), shortestPath(i, k, k-1) + shortestPath(k, j, k-1))

