
Cryptocurrency Intro

Cryptocurrency: what is it?
Fundamentally, it’s a ledger.

Alice owes Bob $10

Alice owes Charlie $20

Charlie owes Bob $50

Bob owes Deborah $90

Deborah owes Alice $15

Cryptocurrency: what is it?
It’s public.

Issues that arise:

● Privacy?
● How do we know both parties agree to a transaction? And how do we know

people aren’t impersonating others?
○ Digital Signatures -- more on this later!

● How do we know everyone will pay their debts?
○ Don’t allow people to go net negative.

Cryptocurrency: what is it?
It’s public.

Alice owes Bob $10
Alice owes Charlie $20
Charlie owes Bob $50
Bob owes Deborah $90
Deborah owes Alice $15

Alice has $100
Bob has $120
Charlie has $50
Deborah has $10

Cryptocurrency: what is it?
It’s not tied to any other currency.

Alice owes Bob 10CC
Alice owes Charlie 20CC
Charlie owes Bob 50CC
Bob owes Deborah 90CC

Alice has 100CC
Bob has 120CC
Charlie has 50CC
Deborah has 10CC

CornellCoin Ledger

Cryptocurrency: what is it?
It’s decentralized.

Alice Bob

Charlie Deborah

Cryptocurrency: what is it?
It’s decentralized.

Issues that arise:

● What is the source of truth? How do we know that everyone has the same
ledger?

○ Need to guarantee some kind of consensus.

● How is new money introduced to the system? And when? And to who?
○ “Work” -- more on this later!

Cryptocurrency: what is it?
It’s a ledger.

Alice owes Bob 10CC
Alice owes Charlie 20CC
Charlie owes Bob 50CC
Bob owes Deborah 90CC

Alice has 100CC
Bob has 120CC
Charlie has 50CC
Deborah has 10CC

CornellCoin Ledger

It’s public.

It’s decentralized.

Digital Signatures

Digital Signatures
Goal:

● Identify a particular person digitally
● Verifiable by a third party
● Not forgeable

Digital Signatures
Why is this hard?

011101100011101…

Alice Bob

Aʎɸɑɛ

011101100011101…

“Alice”
Bob Charlie

Aʎɸɑɛ

Digital Signatures
1. Key Generator

a. Produces a Public Key and Private/Secret Key
b. Example: RSA

2. Sign(message, private_key) -> signature
a. Not reversible (without private_key)
b. Output should appear uncorrelated with input

3. Verify(message, signature, public_key) -> boolean
a. Note: doesn’t involve the private key!

Digital Signatures

Alice

Gen() ->
pk, sk pk

Bob

Charlie

Alice: pk

Alice: pk

Digital Signatures

Alice Bob

m

Sign(m, sk) = s
Verify(m,s,pk) = true

pk,sk Alice: pk

Digital Signatures

Charlie

m2

s
Verify(m2,s,pk) = false“Alice”

Bob Alice: pkAlice: pk

Digital Signatures

Alice owes Bob 100CC Signed by Alice

CornellCoin Ledger

Digital Signatures

Alice owes Bob 100CC Signed by Alice

Alice owes Bob 100CC Signed by Alice

Alice owes Bob 100CC Signed by Alice

Alice owes Bob 100CC Signed by Alice

Alice owes Bob 100CC Signed by Alice

CornellCoin Ledger

Digital Signatures

1. Alice owes Bob 100CC Signed by Alice

2. Alice owes Bob 100CC Signed by Alice

3. Alice owes Bob 100CC Signed by Alice

4. Alice owes Bob 100CC Signed by Alice

5. Alice owes Bob 100CC Signed by Alice

CornellCoin Ledger

Digital Signatures: Implementation
● Implementation is for fun!

○ Presenting a (simplified) version of the RSA implementation

● Prime numbers
● Modulo arithmetic

○ Reminder: this is getting the remainder after division
○ 10 mod 4 = 2
○ 15 mod 5 = 0

● Goal: Find e, d, n, such that (me)d ≡ m (mod n)
○ Should also be tricky to determine d given e, n, m

● Examples taken from Wikipedia

Digital Signatures: KeyGen Implementation
● Choose two prime numbers: p, q

○ Should be chosen randomly

● Compute n = pq
● Compute λ(n) = LCM((p-1, q-1))
● Choose 1 < e < λ(n), such that e and λ(n) are coprime
● Solve for d: d*e = 1 mod λ(n)

● Public key: (n, e)
● Private key: (n, d)

Digital Signatures: Implementation
● Reminder: Find e, d, n, such that (me)d ≡ m (mod n)
● Public key: (n, e) Private key: (n, d)

● Sign(m, sk): md mod n
● Verify(m, s, pk): se mod n == m

Digital Signatures: KeyGen Implementation Example
● p = 61, q = 53
● n = pq = 61*53 = 3233
● λ(3233) = LCM(60, 52) = 780
● Choose e = 17
● Solve for d: d*17 = 1 mod 3233 → d = 413

● Public key: (3233, 17)
● Private key: (3233, 413)

Digital Signatures: Example

Alice

pk = (3233, 17)
sk = (3233, 413) pk: (3233, 17)

Bob

Charlie

Alice: (3233, 17)

Alice: (3233, 17)

Digital Signatures: Example

Alice Bob

m = 65

Sign(m, sk) = md mod n
65413 mod 3233 = 588

Verify(m,s,pk) = (se mod n == m)
58817 mod 3233 == 65

Alice: (3233, 17)pk = (3233, 17)
sk = (3233, 413)

Public/Private Key Encryption

Alice Bob
c = 2910

Encrypt(m,pk) = me mod n
9217 mod 3233 = 2910

Alice: (3233, 17)pk = (3233, 17)
sk = (3233, 413)

m = 92

Decrypt(c,sk) = cd mod n
2910413 mod 3233 = 92

Digital Signatures
Unanswered questions:

● Why on earth does this work?
○

● How do Bob and Charlie know that the public key they received is actually
from Alice?

○ Practically… not a technical solution. Certificate Authorities do the job.
○ Can the blockchain be used for this?

