Union-Find

Quick Review: Connected Components

• Essentially answers the question "which nodes are reachable from here"?

Connected Components

- Not always obvious whether two nodes are in the same connected component
 - Not always obvious what the connected components even are!
 - Depends a lot on graph representation

Union-Find

- Given a set of elements *S*, a partition of *S* is a set of nonempty subsets of *S* such that every element of *S* is in exactly one of the subsets
 - If your elements are nodes in a graph, the partitions can correspond to connected components
 - But can be used for other things!
- A Union-Find (or Disjoint-Set) data structure is one that efficiently keeps track of these partitions
- The Union-Find data structure supports two operations:
 - Union
 - Merge two sets of the partition into one
 - Find
 - Identify which partition a given input is a part of

Representing Trees as Arrays

- Key fact: by definition, every tree node has exactly one parent (except the root)
- Big idea: assign each node to an array index, and store the index of the parent

Notice: only the root node has its value equal to its index

• How does this help with Union-Find?

0	0	0	1	2	5	5	5	5	8
---	---	---	---	---	---	---	---	---	---

					<u>k</u>				
0	0	0	1	2	5	5	5	5	8

0	0	0	1	2	5	5	5	5	8

0	0	0	1	2	5	5	5	5	8

Union-Find

- Can take advantage of the tree-as-array representation to map each node to a unique "component ID"
 - The ID is the root of the tree
- The Find method can be implemented by walking up the tree
 - Using Find on two different nodes can tell you if they're in the same partition
- Note: this representation isn't perfect
 - Doesn't easily let you walk down the tree
 - Not all graphs/connected components can neatly map into a forest without loss of edges
 - In other words, good for Union-Find but not a silver bullet for graph representation

• What about union?

0	0	0	1	2	5	5	5	5	8

0	0	0	1	2	5	5	5	5	8
-	-	-			-	-	-	_	-

0	0	0	1	2	0	5	5	5	8

Union-Find

- The Merge method is as easy as making the root of one tree a child of the root of another tree
 - In our data structure, this just means changing a single value in the array
 - Union may not be called on the roots, so generally Union requires calls to Find

Union-Find: Implementation

#`s` is a list representing the partitions
#`e` is the ID of a particular element
def find(s, e):
 p = s[e]
 if e == p:
 return p
 return find(s, p)

Union-Find: Implementation

#`s` is a list representing the partitions
#`e1` and `e2` are element IDs in partitions we wish to merge
def union(s, e1, e2):
 r1 = find(s, e1)
 r2 = find(s, e2)
 s[r2] = r1

Union-Find: Complexity Analysis

- Space: O(n)
 - Since we need this new array to store the partitions
- Find worst-case runtime: *O*(*n*)
 - Need to walk up tree
 - No guarantee the tree is balanced
- Union worst-case runtime: O(n)
 - Relies on Find, so can't be any better
- Can we do better?
 - For space, no
 - For runtime, yes!

Union-Find: Improving Runtime

- Insight: for any given node, all we really care about is the root of its tree
 - In other words, the nodes in between don't matter
 - Best-case scenario is a very "flat" tree
 - Fewer "hops" during Find

Union-Find: Improving Runtime

• Insight: Union is not commutative

Better to keep resulting tree as "flat" as possible

• Or, impact as few nodes as possible

Union-Find: Improving Runtime

- Using first insight, we can improve Find
 - As we walk up the tree, we can be rewriting parents of visited nodes to point directly to root
 - Won't improve first Find, but will improve all future ones
 - "Improve what you use", "improve as you go"
 - Known as *path-compression*
- Using second insight, we can improve Union
 - Store either *size* or *rank* along with nodes, so you can compare subtrees
 - Choose the root of new tree to be the bigger/deeper tree
 - Known as *union-by-size* or *union-by-rank*
 - Both are reasonable, we'll be looking at *union-by-size*
 - Note: this means we now need to store both *parent* and *size* in each array cell

Union-Find: Improved Implementation

#`s` is a list representation the partitions
#`e` is the ID of a particular element
def find(s, e):

```
v = s[e]
if e != v.parent:
    v.parent = find(s, v.parent)
return v.parent
```

Union-Find: Improved Implementation

#`s` is a list representation the partitions
#`e1` and `e2` are element IDs in partitions we wish to merge
def union(s, e1, e2):

```
r1 = find(s, e1)
r2 = find(s, e2)
if r1 == r2:
   return
if s[r1].size > s[r2].size:
   s[r2].parent = r1
   s[r1].size += s[r2].size
else:
   s[r1].parent = r2
   s[r2].size += s[r1].size
```

Union-Find: Revised Complexity Analysis

- Space: still *O*(*n*)
 - Storing size now, but still just an extra O(n) integers
- Runtime of Union is still dependent on runtime of Find
- So what's the new runtime of Find/Union?
- Answer: almost *O*(*1*), amortized
 - Note: "amortized" essentially means "smoothed out over many operations"
- Actual answer: $O(\alpha(n))$, amortized

Digression: Ackermann Function

$$A(m, n) = -\begin{cases} n+1 & \text{if } m = 0 \\ A(m-1, 1) & \text{if } m > 0 \text{ and } n = 0 \\ A(m-1, A(m, n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}$$

- This function grows REALLY FAST
 - Example: A(4, 2) is 19,729 digits long
- If f(n) = A(n, n), then $\alpha(n) = f^{-1}(n)$
 - Known as the "inverse Ackermann function"
- $\alpha(n)$ grows REALLY SLOW
- OPTIONAL MATERIAL Example: $\alpha(n) < 5$ for literally any *n* that can be written in 0 this physical universe

Union-Find: Applications

• Image segmentation

- Used for self-driving cars seriously!
- Cornell's 2007 DARPA Urban Challenge car used this

Image Segmentation

- Every pixel is a node, every node has an edge to its eight neighbors
- Edge weights are distance in RGB space
 - sqrt($(r_1 r_2)^2 + (g_1 g_2)^2 + (b_1 b_2)^2$)
- Start with each node in its own partition
- Define Int(C) to be the edge of greatest weight in connected component C
 - Called the "internal difference"
- Define T(C) to be k / |C|, where k is a constant
 - The "threshold"
- Iterate through edge weights from least to greatest
- For edge (v_1, v_2) : lacksquare

 - Merge connected components if $w(v_1, v_2) < min(Int(C_1) + T(C_1), Int(C_2) + T(C_2))$ AL MATERIAL

Union-Find: Applications

- Optical Character Recognition (OCR)
 - Similar to image segmentation: can find similarly colored components to be the characters
 - Run character shapes through machine learning pipeline to match known character
 - Or, potentially just use a lookup table if you know the font!
 - Glossing over some details:
 - Dealing with letters like "i" which are not connected components
 - Dealing with "ligatures"