
Union-Find



Quick Review: Connected Components
● Essentially answers the question “which nodes are reachable from here”?



Connected Components

● Not always obvious whether two nodes are in the same connected 
component

○ Not always obvious what the connected components even are!

○ Depends a lot on graph representation



Union-Find
● Given a set of elements S, a partition of S is a set of nonempty subsets of S 

such that every element of S is in exactly one of the subsets
○ If your elements are nodes in a graph, the partitions can correspond to connected components
○ But can be used for other things!

● A Union-Find (or Disjoint-Set) data structure is one that efficiently keeps track 
of these partitions

● The Union-Find data structure supports two operations:
○ Union

■ Merge two sets of the partition into one
○ Find

■ Identify which partition a given input is a part of



Representing Trees as Arrays

0

1 2

3 4

● Key fact: by definition, every tree node has 
exactly one parent (except the root)

● Big idea: assign each node to an array index, 
and store the index of the parent

0 0 0 2 2

Notice: only the root 
node has its value 
equal to its index



Representing Forests as Arrays
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Again, only the roots have 
values equal to their array 
indices



Representing Forests as Arrays
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● How does this help with Union-Find?
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Union-Find
● Can take advantage of the tree-as-array representation to map each node to 

a unique “component ID”
○ The ID is the root of the tree

● The Find method can be implemented by walking up the tree
○ Using Find on two different nodes can tell you if they’re in the same partition

● Note: this representation isn’t perfect
○ Doesn’t easily let you walk down the tree
○ Not all graphs/connected components can neatly map into a forest without loss of edges
○ In other words, good for Union-Find but not a silver bullet for graph representation



Representing Forests as Arrays
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● What about union?
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Union-Find
● The Merge method is as easy as making the root of one tree a child of the 

root of another tree
○ In our data structure, this just means changing a single value in the array
○ Union may not be called on the roots, so generally Union requires calls to Find



Union-Find: Implementation
#`s` is a list representing the partitions
#`e` is the ID of a particular element
def find(s, e):

p = s[e]
if e == p:

return p
return find(s, p)



Union-Find: Implementation
#`s` is a list representing the partitions
#`e1` and `e2 ` are element IDs in partitions we wish to merge
def union(s, e1, e2):

r1 = find(s, e1)
r2 = find(s, e2)
s[r2] = r1



Union-Find: Complexity Analysis
● Space: O(n)

○ Since we need this new array to store the partitions

● Find worst-case runtime: O(n)
○ Need to walk up tree
○ No guarantee the tree is balanced

● Union worst-case runtime: O(n)
○ Relies on Find, so can’t be any better

● Can we do better?
○ For space, no
○ For runtime, yes!



Union-Find: Improving Runtime
● Insight: for any given node, all we really care about is the root of its tree

○ In other words, the nodes in between don’t matter
○ Best-case scenario is a very “flat” tree
○ Fewer “hops” during Find
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Union-Find: Improving Runtime
● Insight: Union is not commutative

○ Better to keep resulting tree as “flat” as possible
○ Or, impact as few nodes as possible
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Union-Find: Improving Runtime
● Using first insight, we can improve Find

○ As we walk up the tree, we can be rewriting parents of visited nodes to point directly to root
○ Won’t improve first Find, but will improve all future ones
○ “Improve what you use”, “improve as you go”
○ Known as path-compression

● Using second insight, we can improve Union
○ Store either size or rank along with nodes, so you can compare subtrees
○ Choose the root of new tree to be the bigger/deeper tree
○ Known as union-by-size or union-by-rank
○ Both are reasonable, we’ll be looking at union-by-size

■ Note: this means we now need to store both parent and size in each array cell



Union-Find: Improved Implementation
#`s` is a list representation the partitions
#`e` is the ID of a particular element
def find(s, e):

v = s[e]
if e != v.parent:

v.parent = find(s, v.parent)
return v.parent



Union-Find: Improved Implementation
#`s` is a list representation the partitions
#`e1` and `e2 ` are element IDs in partitions we wish to merge
def union(s, e1, e2):

r1 = find(s, e1)
r2 = find(s, e2)
if r1 == r2:

return
if s[r1].size > s[r2].size:

s[r2].parent = r1
s[r1].size += s[r2].size

else:
s[r1].parent = r2
s[r2].size += s[r1].size



Union-Find: Revised Complexity Analysis
● Space: still O(n)

○ Storing size now, but still just an extra O(n) integers

● Runtime of Union is still dependent on runtime of Find

● So what’s the new runtime of Find/Union?

● Answer: almost O(1), amortized
○ Note: “amortized” essentially means “smoothed out over many operations”

● Actual answer: O(⍺(n)), amortized



Digression: Ackermann Function

A(m, n) =
n + 1 if m = 0

A(m - 1, 1) if m > 0 and n = 0

A(m - 1, A(m, n - 1)) if m > 0 and n > 0

● This function grows REALLY FAST
○ Example: A(4, 2) is 19,729 digits long

● If f(n) = A(n, n), then ⍺(n) = f-1(n)
○ Known as the “inverse Ackermann function”

● ⍺(n) grows REALLY SLOW
○ Example: ⍺(n) < 5 for literally any n that can be written in

this physical universe



Union-Find: Applications
● Image segmentation

○ Used for self-driving cars - seriously!
○ Cornell’s 2007 DARPA Urban Challenge car used this



Image Segmentation
● Every pixel is a node, every node has an edge to its eight neighbors
● Edge weights are distance in RGB space 

○ sqrt( (r1 - r2)
2 + (g1 - g2)

2 + (b1 - b2)
2 )

● Start with each node in its own partition
● Define Int(C) to be the edge of greatest weight in connected component C

○ Called the “internal difference”

● Define T(C) to be k / |C|, where k is a constant
○ The “threshold”

● Iterate through edge weights from least to greatest
● For edge (v1, v2):

○ If v1 and v2 are already in the same connected component, remove the edge
○ Merge connected components if w(v1, v2) < min(Int(C1) + T(C1), Int(C2) + T(C2))



Union-Find: Applications
● Optical Character Recognition (OCR)

○ Similar to image segmentation: can find similarly colored components to be the characters

○ Run character shapes through machine learning pipeline to match known character

■ Or, potentially just use a lookup table if you know the font!

○ Glossing over some details:

■ Dealing with letters like “i” which are not connected components

■ Dealing with “ligatures”


