Union-Find
Quick Review: Connected Components

- Essentially answers the question “which nodes are reachable from here”?
Connected Components

- Not always obvious whether two nodes are in the same connected component
 - Not always obvious what the connected components even are!
 - Depends a lot on graph representation
Union-Find

- Given a set of elements S, a partition of S is a set of nonempty subsets of S such that every element of S is in exactly one of the subsets
 - If your elements are nodes in a graph, the partitions can correspond to connected components
 - But can be used for other things!

- A Union-Find (or Disjoint-Set) data structure is one that efficiently keeps track of these partitions

- The Union-Find data structure supports two operations:
 - Union
 - Merge two sets of the partition into one
 - Find
 - Identify which partition a given input is a part of
Representing Trees as Arrays

- **Key fact:** by definition, every tree node has exactly one parent (except the root).
- **Big idea:** assign each node to an array index, and store the index of the parent.

Notice: only the root node has its value equal to its index.
Representing Forests as Arrays

Again, only the roots have values equal to their array indices.
Representing Forests as Arrays

- How does this help with Union-Find?
Representing Forests as Arrays
Representing Forests as Arrays

```
| 0  | 0  | 0  | 1  | 2  | 5  | 5  | 5  | 5  | 5  | 8  |
```

```
0
/  \
1   2
|   |
3   4
```

```
5
/   |
6   7
|   |
8   9
```
Representing Forests as Arrays
Representing Forests as Arrays

0 0 0 1 2 5 5 5 5 5 8

Diagram showing a binary forest represented as an array.
Representing Forests as Arrays
Representing Forests as Arrays
Representing Forests as Arrays
Union-Find

- Can take advantage of the tree-as-array representation to map each node to a unique “component ID”
 - The ID is the root of the tree

- The Find method can be implemented by walking up the tree
 - Using Find on two different nodes can tell you if they’re in the same partition

- Note: this representation isn’t perfect
 - Doesn’t easily let you walk down the tree
 - Not all graphs/connected components can neatly map into a forest without loss of edges
 - In other words, good for Union-Find but not a silver bullet for graph representation
Representing Forests as Arrays

What about union?

| 0 | 0 | 0 | 1 | 2 | 5 | 5 | 5 | 5 | 8 |
Representing Forests as Arrays
Union-Find

- The Merge method is as easy as making the root of one tree a child of the root of another tree
 - In our data structure, this just means changing a single value in the array
 - Union may not be called on the roots, so generally Union requires calls to Find
Union-Find: Implementation

#`s` is a list representing the partitions
#`e` is the ID of a particular element
def find(s, e):
 p = s[e]
 if e == p:
 return p
 return find(s, p)
Union-Find: Implementation

#'s` is a list representing the partitions
#`e1` and `e2` are element IDs in partitions we wish to merge

def union(s, e1, e2):
 r1 = find(s, e1)
 r2 = find(s, e2)
 s[r2] = r1
Union-Find: Complexity Analysis

- **Space:** $O(n)$
 - Since we need this new array to store the partitions

- **Find worst-case runtime:** $O(n)$
 - Need to walk up tree
 - No guarantee the tree is balanced

- **Union worst-case runtime:** $O(n)$
 - Relies on Find, so can’t be any better

- **Can we do better?**
 - For space, no
 - For runtime, yes!
Union-Find: Improving Runtime

● Insight: for any given node, all we really care about is the root of its tree
 ○ In other words, the nodes in between don’t matter
 ○ Best-case scenario is a very “flat” tree
 ○ Fewer “hops” during Find
Union-Find: Improving Runtime

- **Insight:** Union is not commutative
 - Better to keep resulting tree as “flat” as possible
 - Or, impact as few nodes as possible
Union-Find: Improving Runtime

- Using first insight, we can improve Find
 - As we walk up the tree, we can be rewriting parents of visited nodes to point directly to root
 - Won’t improve first Find, but will improve all future ones
 - “Improve what you use”, “improve as you go”
 - Known as path-compression

- Using second insight, we can improve Union
 - Store either size or rank along with nodes, so you can compare subtrees
 - Choose the root of new tree to be the bigger/deeper tree
 - Known as union-by-size or union-by-rank
 - Both are reasonable, we’ll be looking at union-by-size
 - Note: this means we now need to store both parent and size in each array cell
Union-Find: Improved Implementation

#s` is a list representation the partitions
#e` is the ID of a particular element
def find(s, e):
 v = s[e]
 if e != v.parent:
 v.parent = find(s, v.parent)
 return v.parent
Union-Find: Improved Implementation

#`s` is a list representation the partitions
#`e1` and `e2` are element IDs in partitions we wish to merge

def union(s, e1, e2):
 r1 = find(s, e1)
 r2 = find(s, e2)
 if r1 == r2:
 return
 if s[r1].size > s[r2].size:
 s[r2].parent = r1
 s[r1].size += s[r2].size
 else:
 s[r1].parent = r2
 s[r2].size += s[r1].size
Union-Find: Revised Complexity Analysis

- Space: still $O(n)$
 - Storing size now, but still just an extra $O(n)$ integers
- Runtime of Union is still dependent on runtime of Find
- So what’s the new runtime of Find/Union?
- Answer: almost $O(1)$, amortized
 - Note: “amortized” essentially means “smoothed out over many operations”
- Actual answer: $O(\alpha(n))$, amortized
Digression: Ackermann Function

\[
A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}
\]

- This function grows REALLY FAST
 - Example: \(A(4, 2)\) is 19,729 digits long
- If \(f(n) = A(n, n)\), then \(\alpha(n) = f^{-1}(n)\)
 - Known as the “inverse Ackermann function”
- \(\alpha(n)\) grows REALLY SLOW
 - Example: \(\alpha(n) < 5\) for literally any \(n\) that can be written in this physical universe
Union-Find: Applications

- Image segmentation
 - Used for self-driving cars - seriously!
 - Cornell’s 2007 DARPA Urban Challenge car used this
Image Segmentation

- Every pixel is a node, every node has an edge to its eight neighbors
- Edge weights are distance in RGB space
 - \[\sqrt{ (r_1 - r_2)^2 + (g_1 - g_2)^2 + (b_1 - b_2)^2 } \]
- Start with each node in its own partition
- Define \(Int(C) \) to be the edge of greatest weight in connected component \(C \)
 - Called the “internal difference”
- Define \(T(C) \) to be \(k / |C| \), where \(k \) is a constant
 - The “threshold”
- Iterate through edge weights from least to greatest
- For edge \((v_1, v_2) \):
 - If \(v_1 \) and \(v_2 \) are already in the same connected component, remove the edge
 - Merge connected components if \(w(v_1, v_2) < \min(\text{Int}(C_1) + T(C_1), \text{Int}(C_2) + T(C_2)) \)
Union-Find: Applications

- **Optical Character Recognition (OCR)**
 - Similar to image segmentation: can find similarly colored components to be the characters
 - Run character shapes through machine learning pipeline to match known character
 - Or, potentially just use a lookup table if you know the font!
 - Glossing over some details:
 - Dealing with letters like “i” which are not connected components
 - Dealing with “ligatures”