
Max Flow / Min Cut



Max Flow
● Given a directed graph G with a special source node s, a special sink node t

○ s has no inbound edges, and t has no outbound edges

● For each edge e in the graph, c(e) is the given “capacity” of the edge
○ The capacity must be greater than 0

○ For simplicity, assume the capacity is an integer or ∞
● Define f(e) to be the “flow” along an edge

○ The flow must be non-negative
○ The flow must also no greater than the capacity for a given edge

● For any given node, the sum of flows of inbound edges must equal the sum of 
flows of outbound edges (“conservation of flow”)

○ Exceptions: s may have any amount of outbound flow, and t may have any amount of inbound 
flow

● Question: what is the maximum amount of flow that can be sent from s to t?
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Max Flow / Min Cut
● Define a “cut” to be a partition of the nodes into two sets. An s-t cut is one 

where one set contains s and the other contains t
● Define the capacity of an s-t cut to be the sum of the capacities of the edges 

that “cross the partition boundary” from the s set to the t set
○ In other words, if the nodes are partitioned into sets A and B with s ∈ A and t ∈ B, the edges 

from u to v where u ∈ A and v ∈ B

● The Min Cut problem is to find the s-t cut with the minimum capacity
● The Max Flow / Min Cut Theorem says the answers are the same!

○ Essentially formalizes the notion of “bottlenecks”

● ...but does our bottleneck finding/saturating algorithm always work?
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Max Flow
● Being greedy isn’t quite good enough

○ At least, the order you pick the paths seems to matter

● Key idea: just because we *can* saturate a path doesn’t necessarily mean we 
*should*

○ We want to be able to “undo” choices if it turns out they boxed us in a corner

● Solution: “residual graphs”
○ Augment the graph with information that allows algorithm to “undo” or “push flow back”
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Max Flow: Ford-Fulkerson Method
● Given graph G, define GR (the residual graph) to be the same graph but with 

only capacity (no flow) and capacities denoted by cR(e).
● Maintain that for any edge (u, v) in G that cR(u, v) + cR(v, u) = c(u, v)

○ Called “skew symmetry”

● While there’s a path P from s to t in GR:
○ Find the minimum capacity cR among all edges in P, call it m
○ For each edge (u, v) in P:

■ If (u, v) in G, update f(u, v) += m
■ Otherwise, (v, u) is in G so update f(v, u) -= m
■ Update cR(u, v) and cR(v, u) accordingly to match remaining capacity in G and maintain 

skew symmetry

● Called a “method” because the path finding mechanism is not explicitly 
defined

○ If you use Breadth-First search, it’s called the Edmonds-Karp algorithm



Max Flow: Applications
● Many seemingly unrelated problems map nicely into a network flow equivalent
● Useful fact: If all edge capacities are integers, the max flow will also be an 

integer (and the flow along any given edge will also be an integer)
○ Known as the Integral Flow Theorem



Max Flow: Network Connectivity
● You have two computers that are indirectly connected through a network of 

other computer systems. How many internal network disconnections is your 
connection resilient to?
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Max Flow: School Dance
● Boys and girls need to be paired up for the school dance, but the kids only 

want to be paired with someone that they know. Is such a pairing possible? 
And if so, what’s the pairing?
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Min Cut: Project Selection
● You have a set of projects pi which will each net a revenue of r(pi). Each 

project will require purchasing one or more machines qj each of which costs 
c(qj). Machines can be shared by multiple projects. The goal is to maximize 
profit.

Let P̄ be the set of projects NOT taken, and Q be the set of machines purchased. Then we 
want:

max [ ∑i r(pi) - ∑pi∈ P̄ r(pi) - ∑pj∈ Q c(qj) ]

∑i r(pi) - min [ ∑pi∈ P̄ r(pi) + ∑pj∈ Q c(qj) ]

Which can be reformulated as:



Min Cut: Project Selection
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