
Consensus Algorithms

Administrivia
● Quiz 2 grades/solutions released

● HW2 released - due next Thursday!

Paxos

Citation: Google Tech Talks video on Paxos

https://www.youtube.com/watch?v=d7nAGI_NZPk

Paxos
What do we mean by consensus?

● Consensus is on one value.
● Consensus is reached once a majority of participants agree.
● Once a consensus is reached, everyone can eventually know the result.
● Participants are happy to reach consensus on any result, not just the one

they propose.
● Communication channels are not perfect (messages may be lost).

Paxos

Alice

Bob
Charlie

Debbie

Erica

“Let’s see Finding Nemo”

“Sure, Finding Nemo is great”
“What about Mission
Impossible”

“Finding Nemooooooooo”

“OK, I guess it’s Finding Nemo”

“Ugh, OK fine”

Paxos

Alice

Bob
Charlie

Debbie

Erica

“Let’s see Finding Nemo”

“Sure, Finding Nemo is great”
“What about Mission
Impossible”

“Finding Nemooooooooo”

“Yes, Finding Nemo!”

“Ugh, OK fine”

Fred

Paxos
Paxos defines three different roles for the nodes in the system:

● Proposers
○ These propose values for consensus.

● Acceptors
○ These “vote” on proposals and form the majority.

● Learners
○ These record whatever the acceptors have accepted as the decision.

Decisions must be persistent. Nodes must know how many acceptors there are.

Note: we’re talking about them separately, but in practice any single machine can
play any number of roles simultaneously

Paxos

● Proposer picks a proposal ID (IDp) and
sends a PREPARE IDp message to
Acceptors

○ IDp must be unique (i.e. different
proposers should pick different IDs)

○ Timeout? Pick higher IDp

● Proposer gets PROMISE response from
majority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to
Acceptors.

○ value can be anything

Proposer

Acceptors

PREPARE 5

PROMISE 5

ACCEPT-REQUEST (5, ‘nemo’)

ACCEPT (5, ‘nemo’)

Learners

● Acceptor receives PREPARE request. Did
it promise to ignore requests with IDp?

○ If yes, then ignore request
○ If no, then promise to ignore ID < IDp (and

send PROMISE IDp in reply)

● Acceptor receives ACCEPT_REQUST. Did it
promise to ignore IDp?

○ If yes, then ignore request
○ If no, reply ACCEPT (IDp, value) and also

send to Learners

Paxos

● Proposer picks a proposal ID (IDp) and
sends a PREPARE IDp message to
Acceptors

○ IDp must be unique (i.e. different
proposers should pick different IDs)

○ Timeout? Pick higher IDp

Proposer

Acceptors

PREPARE 3

● Acceptor receives PREPARE request. Did
it promise to ignore requests with IDp?

○ If yes, then ignore request
○ If no, then promise to ignore ID < IDp (and

send PROMISE IDp in reply)

Reminder: ‘nemo’ is already consensus

PREPARE 6

● Proposer gets PROMISE response from
majority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to
Acceptors.

○ value can be anything

● Acceptor receives ACCEPT_REQUST. Did it
promise to ignore IDp?

○ If yes, then ignore request
○ If no, reply ACCEPT (IDp, value) and also

send to Learners

Paxos

● Proposer picks a proposal ID (IDp) and
sends a PREPARE IDp message to
Acceptors

○ IDp must be unique (i.e. different
proposers should pick different IDs)

○ Timeout? Pick higher IDp

Proposer

Acceptors

PREPARE 3

● Acceptor receives PREPARE request. Did it
promise to ignore requests with IDp?

○ If yes, then ignore request
○ If no, then promise to ignore ID < IDp. Did we already

ACCEPT something?
■ If yes, send PROMISE IDp, ACCEPTED value
■ If no, send PROMISE IDp

Reminder: ‘nemo’ is already consensus

PREPARE 6

PROMISE 6,
ACCEPTED ‘nemo’

● Proposer gets PROMISE response from
majority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to
Acceptors.

○ value can be anything

● Acceptor receives ACCEPT_REQUST. Did it
promise to ignore IDp?

○ If yes, then ignore request
○ If no, reply ACCEPT (IDp, value) and also

send to Learners

Paxos

● Proposer picks a proposal ID (IDp) and
sends a PREPARE IDp message to
Acceptors

○ IDp must be unique (i.e. different
proposers should pick different IDs)

○ Timeout? Pick higher IDp

Proposer

Acceptors

PREPARE 3

● Acceptor receives PREPARE request. Did it
promise to ignore requests with IDp?

○ If yes, then ignore request
○ If no, then promise to ignore ID < IDp. Did we already

ACCEPT something?
■ If yes, send PROMISE IDp, ACCEPTED value
■ If no, send PROMISE IDp

Reminder: ‘nemo’ is already consensus

PREPARE 6

PROMISE 6,
ACCEPTED ‘nemo’

● Proposer gets PROMISE response from
majority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to
Acceptors. Did PROMISES come with
values?

○ If yes, Proposer must use value with highest
IDp.

○ If no, value can be anything
● Acceptor receives ACCEPT_REQUST. Did it

promise to ignore IDp?
○ If yes, then ignore request
○ If no, reply ACCEPT (IDp, value) and also

send to Learners

ACCEPT-REQUEST (6, ‘nemo’)

ACCEPT (6, ‘nemo’)
Learners

Paxos
Proposer

Proposer

Acceptor

Acceptor

Acceptor

PREPARE 5

PROMISE 5

PROMISE 5

PREPARE 2

(ignored)

(ignored)

ACCEPT-REQUEST (5, ‘nemo’)

PROMISE 2

Paxos: Distributed Storage

Server 1 Server 2 Server 3

$100Log ID 0 $100 $100

+$20 = $120

-$50 = $70

Log ID 1

Log ID 2

+$20 = $120

-$50 = $70

+$20 = $120

-$50 = $70

Proposal

Acceptance

+$200 = $270Log ID 3

Paxos: Distributed Storage

Server 1 Server 2 Server 3

$100Log ID 0 $100 $100

+$20 = $120

-$50 = $70

Log ID 1

Log ID 2

+$20 = $120

-$50 = $70

+$20 = $120

-$50 = $70

+$200 = $270 +$200 = $270Log ID 3

-$40 = $230 -$40 = $230Log ID 4

+$1000 = $1070

Proposal

Accepted +$200 = $270

Paxos: Distributed Storage

Server 1 Server 2 Server 3

$100Log ID 0 $100 $100

+$20 = $120

-$50 = $70

Log ID 1

Log ID 2

+$20 = $120

-$50 = $70

+$20 = $120

-$50 = $70

+$200 = $270 +$200 = $270Log ID 3

-$40 = $230 -$40 = $230Log ID 4

+$200 = $270

+$1000 = $1070

Proposal

Accepted -$40 = $230

Paxos: Distributed Storage

Server 1 Server 2 Server 3

$100Log ID 0 $100 $100

+$20 = $120

-$50 = $70

Log ID 1

Log ID 2

+$20 = $120

-$50 = $70

+$20 = $120

-$50 = $70

+$200 = $270 +$200 = $270Log ID 3

-$40 = $230 -$40 = $230Log ID 4

+$200 = $270

-$40 = $230

Proposal

Acceptance

+$1000 = $1070Log ID 5

Paxos: Distributed Storage

Server 1 Server 2 Server 3

$100Log ID 0 $100 $100

+$20 = $120

-$50 = $70

Log ID 1

Log ID 2

+$20 = $120

-$50 = $70

+$20 = $120

-$50 = $70

+$200 = $270 +$200 = $270Log ID 3

-$40 = $230 -$40 = $230Log ID 4

+$200 = $270

-$40 = $230

+$1000 = $1070Log ID 5 +$1000 = $1070 +$1000 = $1070

Paxos: Master Election

Peer-to-peer Primary/Secondary

Paxos
P

P

A

A

A

PREPARE 5

PROMISE 5

PROMISE 5

PREPARE 7

PROMISE 7

PROMISE 7

ACCEPT-REQUEST (5, ‘nemo’)

(ignored)

(ignored)

PREPARE 9

PROMISE 9

PROMISE 9

ACCEPT-REQUEST (7, ‘star wars’)

(ignored)

(ignored)

PREPARE 11

PROMISE 11

PROMISE 11

Digression: Contention
● Contention is a general issue in concurrent algorithms.

○ Race conditions
○ Deadlock
○ Livelock

● Concurrency is HARD!

Digression: Contention (Race Condition)
● What happens if two machines run this code at once?

def incrementSharedValue(value_server):
 x = value_server.get_value()
 y = x + 1
 value_server.set_value(y)

Digression: Contention (Race Condition)

● What happens if two machines run this code at once?

def incrementSharedValue(value_server):
 value_server.lock()
 x = value_server.get_value()
 y = x + 1
 value_server.set_value(y)
 value_server.unlock() This will block if some

other machine has the
lock, until they release it

Digression: Contention (Deadlock)
● What happens if two machines are calling these functions?

def incrementSharedValue(s1, s2):
 s1.lock()
 s2.lock()
 x = s1.get_value() + 1
 y = s2.get_value() + 1
 s1.set_value(x)
 s2.set_value(y)
 s2.unlock()
 s1.unlock()

def incrementSharedValue(s1, s2):
 s2.lock()
 s1.lock()
 x = s1.get_value() + 1
 y = s2.get_value() + 1
 s1.set_value(x)
 s2.set_value(y)
 s1.unlock()
 s2.unlock()

Digression: Contention (Livelock)
● Sort of like deadlock, but state is changing

○ Paxos example from earlier

○ Two people walking toward each other in a hallway

● Possible solutions
○ Exponential backoff

○ Backoff fuzzing

● Both of those solutions are generally good practice for request retries

