Consensus Algorithms

Administrivia
e Quiz 2 grades/solutions released

Average Median Range
4.15/ 5 points 5/ 5 points 0- 5 points

Total points distribution

2
S
bS]
<
S
@
o
=
S]
3+

2 3
Points scored

e HW2 released - due next Thursday!

Paxos

Citation: Google Tech Talks video on Paxos

https://www.youtube.com/watch?v=d7nAGI_NZPk

Paxos

What do we mean by consensus?

Consensus is on one value.

Consensus is reached once a majority of participants agree.

Once a consensus is reached, everyone can eventually know the result.
Participants are happy to reach consensus on any result, not just the one
they propose.

e Communication channels are not perfect (messages may be lost).

Paxos

“Sure, Finding Nemo is great
“What about Mission

|mpOSSIb|e

- “Ugh, OK fine”

“Let’s see Finding Nemo” ‘ “Finding Nemo00000000”

“OK, | guess it's Finding Nemo”

Paxos

“Sure, Finding Nemo is great
“What about Mission

|mpOSSIb|e

- “Ugh, OK fine”

“Let’s see Finding Nemo” ‘ “Finding Nemo00000000”

“Yes, Finding Nemo!”

Paxos

Paxos defines three different roles for the nodes in the system:

e Proposers
o These propose values for consensus.

e Acceptors
o These “vote” on proposals and form the maijority.

e Learners
o These record whatever the acceptors have accepted as the decision.

Decisions must be persistent. Nodes must know how many acceptors there are.

Note: we’re talking about them separately, but in practice any single machine can
play any number of roles simultaneously

Paxos
PREPARE 5

ACCEPT-REQUEST (5, ‘nemo’)

\ /

\ /

PROMISE 5

e Proposer picks a proposal ID (IDp) and
sends a PREPARE IDID message to

o IDp must be unique (i.e. different
proposers should pick different IDs)
o Timeout? Pick higher IDp

° receives PREPARE request. Did

it promise to ignore requests with IDp?
o Ifyes, then ignore request

o If no, then promise to ignore ID < IDp (and

send PROMISE IDp in reply)

ACCEPT (5, ‘nemo’)
IR
e Proposer gets PROMISE response from

majority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to

o value can be anything

o receives ACCEPT_REQUST. Did it

promise to ignore IDp?

o Ifyes, then ignore request
o Ifno, reply ACCEPT (IDp, value) and also
send to Learners

Paxos
: N N

PREPARE 3 PREPARE 6

Reminder: ‘nemo’ is already consensus

Proposer picks a proposal ID (IDp) and
sends a PREPARE IDp message to

O

O

IDp must be unique (i.e. different
proposers should pick different IDs)
Timeout? Pick higher IDp

receives PREPARE request. Did

it promise to ignore requests with IDp?

O

O

If yes, then ignore request
If no, then promise to ignore ID < IDp (and
send PROMISE IDp in reply)

Proposer gets PROMISE response from
majority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to

o value can be anything

receives ACCEPT_REQUST. Did it

promise to ignore IDp?

o Ifyes, then ignore request
o Ifno, reply ACCEPT (IDp, value) and also
send to Learners

Paxos
PREPARE 3 PREPARE 6

) Proposer ~\ ~\ ‘/
) Acceptors__

Reminder: ‘nemo’ is already consensus

PROMISE 6,
ACCEPTED ‘nemo’
e Proposer gets PROMISE response from

majority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to

e Proposer picks a proposal ID (IDp) and
sends a PREPARE IDp message to

o |IDp must be unique (i.e. different
proposers should pick different IDs)

o Timeout? Pick higher ID_ © value can be anything
° receives PREPARE request. Did it ° receives ACCEPT_REQUST. Did it
promise to ignore requests with IDp? promise to ignore IDp?
o If yes, then ignore request o Ifyes, then ignore request
o If no, then promise to ignore ID < IDp. Did we already o If no, reply ACCEPT (IDp, value) and also
ACCEPT something? send to Learners

m If yes, send PROMISE IDp, ACCEPTED value
m If no, send PROMISE IDp

Paxos
PREPARE 3 PREPARE 6

ACCEPT-REQUEST (6, ‘nemo’)

N N 7

N4

Reminder: ‘nemo’ is already consensus

PROMISE 6,

e Proposer picks a proposal ID (IDp) and °
sends a PREPARE IDp message to

o |IDp must be unique (i.e. different
proposers should pick different IDs)
o Timeout? Pick higher IDp

° receives PREPARE request. Did it
promise to ignore requests with IDp?
o If yes, then ignore request o

o If no, then promise to ignore ID < IDp. Did we already
ACCEPT something?
m If yes, send PROMISE IDp, ACCEPTED value
m If no, send PROMISE IDp

ACCEPTED ‘nemo’

ACCEPT (6, ‘nemo’) ,
B, L Caners
Proposer gets PROMISE response from
maijority of acceptors. It sends
ACCEPT_REQUEST (IDp, value) to

. Did PROMISES come with

values?
o If yes, Proposer must use value with highest
ID .
p

o If no, value can be anything
receives ACCEPT_REQUST. Did it
promise to ignore IDp?

o Ifyes, then ignore request
o Ifno, reply ACCEPT (IDp, value) and also
send to Learners

Paxos

PREPARE 5 ACCEPT-REQUEST (5, ‘nemo’)
3 PREPARE 2
o\
PROMISE 5 (ignored)
PROMISE 5 (ignored)

PROMISE 2

Paxos: Distributed Storage

Log ID 3
Log ID 2
Log ID 1
LogID O

| +$200 = $270 !

-$50 = $70

+$20 = $120

$100

-$50 = $70

+$20 = $120

$100

\;/’

-$50 = $70
+$20 = $120
$100

/_/V

Proposal

Paxos: Distributed Storage

Log ID 4
Log ID 3
Log ID 2
Log ID 1
LogID O

-$40 = $230

+$200 = $270

-$50 = $70

+$20 = $120

$100

\

-$40 = $230
+$200 = $270 ' +$1000 = $1070
-$50 = $70 -$50 = $70
+$20 = $120 +$20 = $120
$100 $100

‘\/

Proposal

Paxos: Distributed Storage

Log ID 4 -$40 = $230 -$40 = $230 i- _-l-é'I_O-OC_) ;_$;O_7E)_:
Log ID 3 +$200 = $270 +$200 = $270 +$200 = $270
Log ID 2 -$50 = $70 -$50 = $70 -$50 = $70

Log ID 1 +$20 = $120 +$20 = $120 +$20 = $120
Log ID O $100 $100 $100

Proposal

Paxos: Distributed Storage

LogID 5 ' +$1000 = $1070 !
Log ID 4 -$40 = $230 -$40 = $230 -$40 = $230

Log ID 3 +$200 = $270 +$200 = $270 +$200 = $270
Log ID 2 -$50 = $70 -$50 = $70 -$50 = $70

Log ID 1 +$20 = $120 +$20 = $120 +$20 = $120
Log ID O $100 $100 $100

Proposal

Paxos: Distributed Storage

Log ID 5
Log ID 4
Log ID 3
Log ID 2
Log ID 1
LogID O

+$1000 = $1070

+$1000 = $1070

-$40 = $230

-$40 = $230

+$1000 = $1070

+$200 = $270

+$200 = $270

-$40 = $230

-$50 = $70

-$50 = $70

+$200 = $270

-$50 = $70

+$20 = $120

+$20 = $120

+$20 = $120

$100

$100

$100

Paxos: Master Election

"
-

Peer-to-peer Primary/Secondary

Paxos
CED

PREPARE 5 ACCEPT-REQUEST (5, ‘nemo’) PREPARE 9

ACCEPT-REQUEST (7, ‘star wars’) PREPARE 11

PREPARE 7
L P

Y \ \J Y
< Y

PROMISE 5 PROMISE 7 (ignored) PROMISE 9 (ignored) PROMISE 11

ﬂ PROMISE 5 PROMISE 7

(ignored) PROMISE 9 (ignored) PROMISE 11

Digression: Contention

e Contention is a general issue in concurrent algorithms.
o Race conditions
o Deadlock
o Livelock

e Concurrency is HARD!

Digression: Contention (Race Condition)

e \What happens if two machines run this code at once?

def incrementSharedValue (value server) :
x = value server.get value()
y = x + 1
value server.set value (y)

Digression: Contention (Race Condition)

e What happens if two machines run this code at once?

def incrementSharedValue (value server):
value server.lock()
x = value server.get vaiue ()
y = x + 1
value server.set value(y)

value server.unlock() This will block if some
other machine has the
lock, until they release it

Digression: Contention (Deadlock)

e \What happens if two machines are calling these functions?

def incrementSharedValue(sl, s2): def incrementSharedValue(sl, s2):
sl.lock () s2.lock ()
sZ2.lock() sl.lock()
x = sl.get value() + 1 x = sl.get value() + 1
y = s2.get value() + 1 y = s2.get value() + 1
sl.set value (x) sl.set value (x)
s2.set value (y) s2.set value (y)
s2.unlock () sl.unlock ()

sl.unlock () s2.unlock ()

Digression: Contention (Livelock)

e Sort of like deadlock, but state is changing

o Paxos example from earlier

o Two people walking toward each other in a hallway
e Possible solutions

o Exponential backoff

o Backoff fuzzing

e Both of those solutions are generally good practice for request retries

