CS 5112 clinic: testing
and readabpillity

9/20
Richard Bowen

Quick Point

e [esting and readability are about the very
human sides of software development (no
proofs!)

e Suggestions here are based on experience in
big corps

Why care about readability”

« SWE is as much a maintenance problem as an
authoring problem

e |n the real world, most code Is written once, read
many times

 Don’t waste your coworkers’ time making them puzzle
out what you were trying to do

 Don't waste your own time, 6 months on!

Big Companies think this is
important!

 Companies have released their style guides:
 Google
* Facebook

e Others

Use positive names

list out of order = False
for 1 1n range(len(list)) - 1:
if list(i+l) < list[i]:
list out of order = True

list 1n order = True
for 1 1n range(len(list)) - 1:
if list(i+l) < list[i]:
list in order = False

Prefer breaking to indenting

At pixel (row, col), compute sum
of surrounding 8 pixels

pixel sum = 0
for delta row in [(-1, 0, 1)]:
for delta col in [(-0, O, 1)]:
1f not (delta row == 0 and delta col==0)
and row+delta row < height
and row+delta row >= 0
and col+delta col < width
and col+delta col >= O0:
pixel sum +=
pixel (row+delta row, col+delta col)

Prefer breaking to indenting

At pixel (row, col), compute sum
of surrounding 8 pixel values

pixel sum = 0

for delta row in [(-1, O, 1)]:
for delta col in [(-0, O, 1)]:
1f delta row == 0 and delta col==0:
continue
1f row+delta row >= height: continue
1f row+delta row < 0 : continue
1f col+delta col >= width : continue
1f col+delta col < O : continue

pixel sum +=
pixel (row+delta row, col+delta col)

Use descriptive names

for 1 1n range(vertices):
for j i1n range(neighbors[i]):
print (“There 1s an edge %d->%d” %(1,7]))

for vertex 1n range(vertices):
for neighbor i1n range(neighbors[vertex]):
print (“There 1s an edge %$d->%d”
% (vertex,neighbor))

Single source of truth

infile = open(“/tmp/experiment3/input.txt”)
processed data = process(f)

outfile = open(“/tmp/experiment3/output.txt”)
write data to file(processed data, outfile)

path = “/tmp/experiment3”
infile = open(os.join(path,”input.txt”))
processed data = process(f)

outfile = open(os.join(path,“output.txt”))
write data to file(processed data, outfile)

Don't repeat work

def get prime factors(n):
if prime, done!
1f 1s prime(n): return [n]

still to factor = [n]
prime factors = []
while len(still to factor) ==
next factor = still to factor.pop()
1f 1s prime(next factor):
prime factors.append(next factor)
continue
factors = getTwoFactors(next factor)
sti1ll to factor.push(factors[0])
still to factor.push(factors[1l])

Enforce assumptions with
assertions

def slope(xl, x2, yl, y2):
return (y2-yl)/(x2-x1)

def slope(xl, x2, yl, y2):
assert(abs(x2-x1) > le-8)
return (y2-yl)/(x2-x1)

lesting

 Why do we write tests for software”
* As a check when authoring it

« To avoid future bugs (“regressions”)

* [0 help refactoring

e As a form of documentation

Unit Testing

e “Unit” = “"Smallest testable part”

 Most widely used kind of test

Useful testing-related tools
N the real world

o Unit testing framework
* e.g., pyunit
» Continuous integration frameworks

* e.g., travis

e Code review frameworks

e 2.9., gerrit

Good properties of test”

e [ast
e Deterministic
e Correct

e Readable

e Hermetic

lTest-Driven development

* A software practice where you write the tests first

* No strong opinion from me

Test-Driven bug fixing

* \WWhen you find a bug, write a test that would
catch it before you fix it

* There is a strong opinion from me: do this!

A few testing patterns

lest the “contract” not the
implementation

L. =[1,2,3,4,3,2,1]
assert(min idx(L) == 0)

L =11,2,3,4,3,2,1]
assert(min idx(L) in [0,6])

L =11,2,3,4,3,2,1]
assert(L[min idx(L)] == 1)

Separate tests

def HashTableTests():
HT = HashTable()

#test insert
HT.insert(1l, ‘a’)
assert(HT.get(1l) == ‘a’)

#test overwriting
HT.insert(1l, ‘b’)
assert(HT.get(1l) == ‘b"’)

#test size
assert (HT.size() == 1)

#test remove

HT.remove(1l)

assert (HT.size() == 0)
assert(HT.get (1) == None)

test multiple inserts..

Separate tests

def HashTableTestInsert():
def HashTableTestSize():

def HashTableTestRemove():
def HashTableTestOverwrite():

Test weird/edge cases!

-mpty lists, empty tuples
Null pointers (Nones in python)

numbers that are positive, negative, zero, infinity,
-Infinity, NAN, very large, very small

Inputs somehow wrong

Don't just repeat the
implementation in the test!

def TestSorted():
L =111, 3, 2, 9, 4, 8, 2]
L sorted = MySort(L)
while len(L) > O0:
assert(L sorted[0] == min(L))
L =[x for x in L if x != min(L)]

def TestSorted():
L =11, 3, 2, 9, 4, 8, 2]
L sorted = MySort(L)
assert(len(L) == len(L _sorted))
for 1 in L:
assert 1 in L sorted

for i in range(len(L) - 1):
assert L sorted[i] <= L sorted[i+1]

Where to start

 One “happy path” test
 Medium-complex example
* [ests for exceptional/edge cases

o Additional tests if you find bugs later

| et's work an example

* Toy problem: given a list of 2-D points, find the
closest pair

e | have some code and even a test! It passes,
Yelelglele]

cxample, part 2

 New strategy: \ o
e Sort points by x coordinate .

e |gnore points whose X
distance from active point is

beyond lowest distance so far /
 Much faster (?!)

