
CS 5112 clinic: testing
and readability

9/20
Richard Bowen

Quick Point
• Testing and readability are about the very
human sides of software development (no
proofs!)

• Suggestions here are based on experience in
big corps

• Readability and testing are a HUGE HUGE
HUGE part of getting things to work in the Real
World!

Why care about readability?

• SWE is as much a maintenance problem as an
authoring problem

• In the real world, most code is written once, read
many times

• Don’t waste your coworkers’ time making them puzzle
out what you were trying to do

• Don’t waste your own time, 6 months on!

Big Companies think this is
important!

• Companies have released their style guides:

• Google

• Facebook

• Others

Use positive names
list_out_of_order = False
for i in range(len(list)) - 1:
 if list(i+1) < list[i]:
 list_out_of_order = True

list_in_order = True
for i in range(len(list)) - 1:
 if list(i+1) < list[i]:
 list_in_order = False

Prefer breaking to indenting

At pixel (row, col), compute sum
of surrounding 8 pixels

pixel_sum = 0
for delta_row in [(-1, 0, 1)]:
 for delta_col in [(-0, 0, 1)]:
 if not (delta_row == 0 and delta_col==0)
 and row+delta_row < height
 and row+delta_row >= 0
 and col+delta_col < width
 and col+delta_col >= 0:
 pixel_sum +=
 pixel(row+delta_row, col+delta_col)

At pixel (row, col), compute sum
of surrounding 8 pixel values

pixel_sum = 0
for delta_row in [(-1, 0, 1)]:
 for delta_col in [(-0, 0, 1)]:
 if delta_row == 0 and delta_col==0:
 continue
 if row+delta_row >= height: continue
 if row+delta_row < 0 : continue
 if col+delta_col >= width : continue
 if col+delta_col < 0 : continue

 pixel_sum +=
 pixel(row+delta_row, col+delta_col)

Prefer breaking to indenting

Use descriptive names
for i in range(vertices):
 for j in range(neighbors[i]):
 print(“There is an edge %d->%d” %(i,j))

for vertex in range(vertices):
 for neighbor in range(neighbors[vertex]):
 print(“There is an edge %d->%d”
 %(vertex,neighbor))

Single source of truth
infile = open(“/tmp/experiment3/input.txt”)
processed_data = process(f)

outfile = open(“/tmp/experiment3/output.txt”)
write_data_to_file(processed_data, outfile)

path = “/tmp/experiment3”
infile = open(os.join(path,”input.txt”))
processed_data = process(f)

outfile = open(os.join(path,“output.txt”))
write_data_to_file(processed_data, outfile)

Don’t repeat work
def get_prime_factors(n):
 # if prime, done!
 if is_prime(n): return [n]

 still_to_factor = [n]
 prime_factors = []
 while len(still_to_factor) == 0:
 next_factor = still_to_factor.pop()
 if is_prime(next_factor):
 prime_factors.append(next_factor)
 continue
 factors = getTwoFactors(next_factor)
 still_to_factor.push(factors[0])
 still_to_factor.push(factors[1])

Enforce assumptions with
assertions

def slope(x1, x2, y1, y2):
 return (y2-y1)/(x2-x1)

def slope(x1, x2, y1, y2):
 assert(abs(x2-x1) > 1e-8)
 return (y2-y1)/(x2-x1)

Testing

• Why do we write tests for software?

• As a check when authoring it

• To avoid future bugs (“regressions”)

• To help refactoring

• As a form of documentation

Unit Testing

• “Unit” = “Smallest testable part”

• Most widely used kind of test

Useful testing-related tools
in the real world

• Unit testing framework

• e.g., pyunit

• Continuous integration frameworks

• e.g., travis

• Code review frameworks

• e.g., gerrit

Good properties of test?

• Fast

• Deterministic

• Correct

• Readable

• Hermetic

Test-Driven development

• A software practice where you write the tests first

• No strong opinion from me

Test-Driven bug fixing

• When you find a bug, write a test that would
catch it before you fix it

• There is a strong opinion from me: do this!

A few testing patterns

Test the “contract” not the
implementation

L = [1,2,3,4,3,2,1]
assert(min_idx(L) == 0)

L = [1,2,3,4,3,2,1]
assert(min_idx(L) in [0,6])

L = [1,2,3,4,3,2,1]
assert(L[min_idx(L)] == 1)

Separate tests
def HashTableTests():
 HT = HashTable()

 #test insert
 HT.insert(1, ‘a’)
 assert(HT.get(1) == ‘a’)

 #test overwriting
 HT.insert(1, ‘b’)
 assert(HT.get(1) == ‘b’)

 #test size
 assert(HT.size() == 1)

 #test remove
 HT.remove(1)
 assert(HT.size() == 0)
 assert(HT.get(1) == None)

 # test multiple inserts…

Separate tests

def HashTableTestInsert(): …
def HashTableTestSize(): …
def HashTableTestRemove(): …
def HashTableTestOverwrite(): …

Test weird/edge cases!

• Empty lists, empty tuples

• Null pointers (Nones in python)

• numbers that are positive, negative, zero, infinity,
-infinity, NAN, very large, very small

• Inputs somehow wrong

Don’t just repeat the
implementation in the test!

def TestSorted():
 L = [1, 3, 2, 9, 4, 8, 2]
 L_sorted = MySort(L)
 while len(L) > 0:
 assert(L_sorted[0] == min(L))
 L = [x for x in L if x != min(L)]

def TestSorted():
 L = [1, 3, 2, 9, 4, 8, 2]
 L_sorted = MySort(L)
 assert(len(L) == len(L_sorted))
 for l in L:
 assert l in L_sorted

 for i in range(len(L) - 1):
 assert L_sorted[i] <= L_sorted[i+1]

Where to start

• One “happy path” test

• Medium-complex example

• Tests for exceptional/edge cases

• Additional tests if you find bugs later

Let’s work an example

• Toy problem: given a list of 2-D points, find the
closest pair

• I have some code and even a test! It passes,
woohoo!

Example, part 2
• New strategy:

• Sort points by x coordinate

• Ignore points whose x
distance from active point is
beyond lowest distance so far

• Much faster (?!)

Best distance so far

Only need to look in this region!

