CS5785 Homework 2

The homework is generally split into programming exercises and written exercises.
This homework is due on October 10, 2019 at 11:59 PM EST. Upload your homework to CMS. Please
upload the submission as a single . zip file. A complete submission should include:

1. A write-up as a single . pdf file

2. Source code for all of your experiments (AND figures) in . py files if you use Python or . ipynb
files if you use the Jupyter Notebook. If you use some other language, include all build scripts
necessary to build and run your project along with instructions on how to compile and run
your code.

The write-up should contain a general summary of what you did, how well your solution works, any
insights you found, etc. On the cover page, include the class name, homework number, and team
member names. You are responsible for submitting clear, organized answers to the questions. You
could use online BIEX templates from Overleaf, under “Homework Assignment” and and “Project /
Lab Report”.

Please include all relevant information for a question, including text response, equations, figures,
graphs, output, etc. If you include graphs, be sure to include the source code that generated them.
Please pay attention to Slack for relevant information regarding updates, tips, and policy changes.
You are encouraged (but not required) to work in groups of 2.

IF YOU NEED HELP

There are several strategies available to you.

* If you ever get stuck, the best way is to ask on Slack. That way, your solutions will be available to
the other students in the class.

* Your instructor and TAs will offer office hours!, which are a great way to get some one-on-one help.

* You are allowed to use well known libraries such as scikit-learn, scikit-image, numpy, scipy,
etc. in this assignment. Any reference or copy of public code repositories should be properly cited
in your submission (examples include Github, Wikipedia, Blogs).

https://cornelltech.github.io/cs5785-fall-2019/contact.html


https://cmsx.cs.cornell.edu/
https://www.overleaf.com/latex/templates/
https://cornelltech.github.io/cs5785-fall-2019/contact.html
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PROGRAMMING EXERCISES

1. Eigenface for face recognition.

In this assignment you will implement the Eigenface method for recognizing human faces. You will
use face images from The Yale Face Database B, where there are 64 images under different lighting
conditions per each of 10 distinct subjects, 640 face images in total. With your implementation,
you will explore the power of the Singular Value Decomposition (SVD) in representing face images.

Read more (optional):

 Eigenface on Wikipedia: https://en.wikipedia.org/wiki/Eigenface

 Eigenface on Scholarpedia: http://www.scholarpedia.org/article/Eigenfaces

(a) Download The Face Dataset. After you unzip faces.zip, you will find a folder called images
which contains all the training and test images; train.txt and test.txt specifies the training set
and test (validation) set split respectively, each line gives an image path and the correspond-
ing label.

(b) Load the training set into a matrix X: there are 540 training images in total, each has 50 x 50
pixels that need to be concatenated into a 2500-dimensional vector. So the size of X should
be 540 x 2500, where each row is a flattened face image. Pick a face image from X and display
that image in grayscale. Do the same thing for the test set. The size of matrix X¢es¢ for the test
set should be 100 x 2500.

Below is the sample code for loading data from the training set. You can directly run it in
Jupyter Notebook:

import numpy as np

from scipy import misc

from matplotlib import pylab as plt
import matplotlib.cm as cm
Jmatplotlib inline

train_labels, train_data = [], []
for line in open('./faces/train.txt'):
im = misc.imread(line.strip().split() [0])
train_data.append(im.reshape(2500,))
train_labels.append(line.strip() .split() [1])
train_data, train_labels = np.array(train_data, dtype=float), np.array(train_labels, dtype=int)
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print train_data.shape, train_labels.shape
plt.imshow(train_data[10, :].reshape(50,50), cmap = cm.Greys_r)
plt.show()
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(c) Average Face. Compute the average face p from the whole training set by summing up every
row in X then dividing by the number of faces. Display the average face as a grayscale image.


https://en.wikipedia.org/wiki/Eigenface
http://www.scholarpedia.org/article/Eigenfaces
http://cornelltech.github.io/cs5785-fall-2019/data/faces.zip
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(d)

(e)
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(g)

(h)

Mean Subtraction. Subtract average face p from every row in X. That is, X; := X; — ¢, where x;
is the i-th row of X. Pick a face image after mean subtraction from the new X and display that
image in grayscale. Do the same thing for the test set Xest Using the pre-computed average
face pin (c).

Eigenface. Perform Singular Value Decomposition (SVD) on training set X (X = UZV') to get
matrix VT, where each row of V! has the same dimension as the face image. We refer to vj,
the i-th row of V7, as i-th eigenface. Display the first 10 eigenfaces as 10 images in grayscale.

Low-rank Approximation. Since X is a diagonal matrix with non-negative real numbers on
the diagonal in non-ascending order, we can use the first r elements in X together with first
r columns in U and first r rows in V! to approximate X. That is, we can approximate X by
X, =U[,: r] [ r,: 1] VI[: r,:]. The matrix X; is called rank-r approximation of X. Plot the
rank-r approximation error IX — X, || 2 as a function of r when r = 1,2, ..., 200.

Eigenface Feature. The top r eigenfaces VI = (v, vs,..., 03T span an r-dimensional
linear subspace of the original image space called face space, whose origin is the average face
u, and whose axes are the eigenfaces {vy, v,...,v,}. Therefore, using the top r eigenfaces
{v1,v9,..., v/}, we can represent a 2500-dimensional face image z as an r-dimensional feature
vector f: f=V'[:r,:] z= [v1, v2,..., v,] 2. Write a function to generate r-dimensional feature
matrix F and Feg for training images X and test images Xest, respectively (to get F, multiply X
to the transpose of first r rows of VT, F should have same number of rows as X and r columns;
similarly for Xies)-

Face Recognition. Extract training and test features for r = 10. Train a Logistic Regression
model using F and test on Fiest. Report the classification accuracy on the test set. Plot the
classification accuracy on the test set as a function of r when r = 1,2,...,200. Use “one-vs-
rest” logistic regression, where a classifier is trained for each possible output label. Each
classifier is trained on faces with that label as positive data and all faces with other labels as
negative data. sklearn calls this “ovr” mode.

2. What'’s Cooking?

(a)

(b)

spaghetti,
tomatoes, olive oil,
red onion, garlic,
red pepper, basil,
black pepper,
cheese

[talian Food!

Join the What’s Cooking competition on Kaggle. Download the training and test data (in
. json). The competition page describes how these files are formatted.

Tell us about the data. How many samples (dishes) are there in the training set? How many
categories (types of cuisine)? Use a list to keep all the unique ingredients appearing in the
training set. How many unique ingredients are there?

2||.|| g is the Frobenius Norm of a matrix: || Al = \ /Z;?il Z;?zl la;; |2, which can be directly computed in numpy.


https://www.kaggle.com/c/whats-cooking
http://mathworld.wolfram.com/FrobeniusNorm.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html
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(d)

(e)
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(g)

Represent each dish by a binary ingredient feature vector. Suppose there are d different in-
gredients in total from the training set, represent each dish by a 1 x d binary ingredient vector
x, where x; = 1 if the dish contains ingredient i and x; = 0 otherwise. For example, suppose
all the ingredients we have in the training set are { beef, chicken, egg, lettuce, tomato, rice }
and the dish is made by ingredients { chicken, lettuce, tomato, rice }, then the dish could be
represented by a 6 x 1 binary vector [0,1,0, 1,1, 1] as its feature or attribute. Use n x d feature
matrix to represent all the dishes in training set and test set, where n is the number of dishes.

Using Naive Bayes Classifier to perform 3 fold cross-validation on the training set and report
your average classification accuracy. Try both Gaussian distribution prior assumption and
Bernoulli distribution prior assumption.

For Gaussian prior and Bernoulli prior, which performs better in terms of cross-validation
accuracy? Why? Please give specific arguments.

Using Logistic Regression Model to perform 3 fold cross-validation on the training set and
report your average classification accuracy.

Train your best-performed classifier with all of the training data, and generate test labels on
test set. Submit your results to Kaggle and report the accuracy.

WRITTEN EXERCISES

You can find links to the textbooks for our class on the course website.

Submit the answers to these questions along with your writeup as a single . pdf file. We do recom-
mend you to type your solutions using LaTeX or other text editors, since hand-written solutions are
often hard to read. If you handwrite them, please be legible!

1. HTF Exercise 4.1 (From Generalized to Standard Eigenvalue Problem)

2. HTF Exercise 4.2 (Correspondence between LDA and classification by linear least squares.)

3. SVD of Rank Deficient Matrix. Consider matrix M. It has rank 2, as you can see by observing that
there times the first column minus the other two columns is 0.

(a)
(b)
(c)
(d)
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Compute the matrices M' M and MM,
Find the eigenvalues for your matrices of part (a).
Find the eigenvectors for the matrices of part (a).

Find the SVD for the original matrix M from parts (b) and (c). Note that there are only two
nonzero eigenvalues, so your matrix X should have only two singular values, while U and V
have only two columns.


https://cornelltech.github.io/cs5785-fall-2019/
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(e) Setyour smaller singular value to 0 and compute the one-dimensional approximation to the
matrix M.



